Annex 7.2

South Humber Channel Marine Studies:

Water & Sediment Quality

(Institute of Estuarine and Coastal Studies University of Hull)

INSTITUTE of ESTUARINE and COASTAL STUDIES

THE UNIVERSITY OF HULL

Institute of Estuarine and Coastal Studies (IECS)

South Humber Channel Marine Studies: Water & Sediment Quality

Report to Yorkshire Forward

Institute of Estuarine and Coastal Studies
University of Hull

September 2010

Author(s): T. Coddington & A. Leighton

Report: ZBB752B-F-2010

Institute of Estuarine & Coastal Studies (IECS)

The University of Hull Cottingham Road Hull HU6 7RX UK

Tel: +44 (0)1482 464120 Fax: +44 (0)1482 464130

E-mail: iecs@hull.ac.uk

Web site: http://www.hull.ac.uk/iecs

Client: Yorkshire Forward

Title: South Humber Channel Marine Studies: Water & Sediment Quality

September 2010

Reference No: ZBB752B-F-2010

For and on beh Estuarine and 0	alf of the Institute of Coastal Studies
Approved by:	
Signed:	
Position:	
Date:	

This report has been prepared by the Institute of Estuarine and Coastal Studies, with all reasonable care, skill and attention to detail as set within the terms of the Contract with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

Printed on 100% recycled paper

TABLE OF CONTENTS

T/	ABLE OF CONTENTS	
1.	Introduction	1
2.	METHODOLOGY	2
	2.1 Water Quality	2
	2.2 Sediment Quality	2
	2.2.1 Particle Size Analysis Sample Collection	2
	2.2.2 Contaminant Sample Collection	3
	2.2.3 Laboratory Analysis	
3.	RESULTS	6
	3.1 Water Quality	6
	3.2 Sediment Quality	7
	3.2.1 Sample Locations	7
	3.2.2 Survey Logs	10
	3.2.3 Particle Size Analysis Data	14
	3.2.4 Contaminant Analysis Data	17
4.	SUMMARY	19
ıΑ	NNEX 1. INTERTIDAL BENTHIC SURVEY PHOTOS	20
ıΑ	NNEX 2. SUBTIDAL BENTHIC SAMPLE PHOTOS	32
ıΑ	NNEX 3. PARTICLE SIZE ANALYSIS RESULTS	35
1A	NNEX 4 ALCONTROL CONTAMINANT REPORTS	37

1. INTRODUCTION

Yorkshire Forward is currently investigating the feasibility of commercial development in the Humber Estuary between the Humber Sea Terminal and Immingham Port (Figure 1).

Figure 1: Potential development area in the Humber estuary.

The area has the potential to provide a suitable location for a variety of development types including a multi-user marine facility or a tidal power generator. In assessing the feasibility of any such development, a host of studies relating to the marine elements of the development are required which will then act as baseline data if the development is taken forward to the Environmental Impact Assessment (EIA) stage.

The Institute of Estuarine & Coastal Studies has been commissioned in association with Roger Tym & Partner, to undertake some of the components required. This report details the methodologies employed and presents the data obtained from the water and sediment quality surveys undertaken in May/June 2010. The aim of these surveys was to provide baseline data on the quality of the water and sediment within the area. This report presents the initial findings of these surveys, with no further discussion or analysis of the data.

2. METHODOLOGY

2.1 Water Quality

The water sampling was carried out on board the *Rebecca M.* A YSI multi-parameter water quality monitor (Sonde) was set to record data every second and was calibrated at zero by placing the sensor head just above the water. The Sonde was weighted and deployed over board while the vessel was stationary. Data relating to temperature, pressure, salinity, PH and conductivity were measured and logged on to the hand held display unit for retrieval at the end of the survey. Samples were taken throughout the day covering ebb, flood and slack tidal conditions.

2.2 Sediment Quality

2.2.1 Particle Size Analysis Sample Collection

A single PSA sample was collected from each of the 36 intertidal benthic sampling stations (Bailey *et al* 2010)¹. Each station was accessed by hovercraft and located using a handheld WAAS enabled Thales Mobile Mapper GPS. Each sample was collected using a clean plastic spoon to remove the top layer (2-3cm), of undisturbed sediment within two metres of the invertebrate core sample. The samples were stored in sealed plastic bags and labelled externally with information such as client, project, site, date and the analysis required. The sediment samples were placed in a cool box containing ice packs to maintain a constant low temperature (approximately 4-5°C). At the end of the day the PSA samples were transferred to the IECS laboratory where they were kept frozen until analysis.

A single PSA sample was also collected from each of the 30 pre-determined subtidal benthic sampling stations which were located by the DGPS on board the Water Guardian, an Environment Agency Survey Vessel. A 0.1m^2 Hamon grab was lowered to the seabed and the resulting sample recovered (Plate 1). Due to the lack of inspection doors within the Hamon grab, the volume of the sample could not be assessed whilst the sample was retained within the grab. Therefore the collected sediment was removed to an underlying container prior to evaluation. Where the volume of retained material was less than 5 litres the sample was rejected.

.

¹ M. Bailey, C. Baulcomb, D. Burdon, O. Dawes, A. Leighton, W. Musk & T. Smith (2010). Humber Terminal Intertidal and Subtidal Benthic & Fish Surveys. Reference No. ZBB752

Plate 1: Recovery of the Hamon grab.

A single grab sample was taken at each station for macrofaunal and sediment analysis. Each acceptable sample was removed from the Hamon grab, placed into a clean fish box and photographed (Annex 2). A clean plastic scoop was then used to mix the sample and remove approximately 100g of sediment for PSA. The sample was then stored in a plastic bag, which was clearly labelled, and kept in a cool box until the end of the day, at which point it was transferred to IECS and kept frozen until analysis.

A complete survey log was maintained throughout both the intertidal and subtidal surveys detailing time, position, physical characteristics of the sediment, climatic conditions, biological surface features (e.g. tubes, casts, feeding pits, faecal mounds) and any other notable features. In addition, photographs of the intertidal sites and the subtidal samples were taken at each sampling location (Annex 1).

2.2.2 CONTAMINANT SAMPLE COLLECTION

2.2.2.1 Intertidal & subtidal samples

Sediment samples were also collected for contaminant analysis at six of the intertidal sampling stations and six of the subtidal sampling stations (Figures 3 & 4). Samples were collected using the same methods as described for PSA sample collection. Sample containers were supplied by Alcontrol and returned to the Alcontrol laboratory in cool boxes via courier for subsequent analysis.

2.2.2.2 Vibracore samples

As part of the Ground Investigation works Vinci Construction UK Ltd were commissioned by Yorkshire Forward to undertake a programme of vibracores (Vinci 2010)². Vibracore stations were identified by Vinci construction of which IECS collected sediment samples from 21 of the proposed stations. The vibracore samples were collected in a six meter long clear

Page 3

² Vinci 2010, Report on a Ground Investigation at South Humber Channel Marine Studies. Reference No. F15842.

plastic tube of 10cm diameter. Vinci cut the core into one meter sections for subsequent shear force testing. The sediment samples were therefore gathered from the cut ends of the one meter sections. The core was cut with a hack saw, then capped and taped to keep it fresh.

The sub samples were collected with a plastic scoop. Parts of the sample which had been in contact with the hacksaw blade were treated as potentially contaminated and were discarded.

A small amount from each of the cuts along the core was scooped out and placed in the contaminant containers supplied by Alcontrol. The containers were sealed, labelled and placed in a cold box until the end of each day when they were returned to IECS ready for transfer to Alcontrol.

2.2.3 LABORATORY ANALYSIS

2.2.3.1 Particle Size Analysis

The particle size analysis was carried out at IECS using a combination of dry sieving and laser particle size analysis. Prior to analysis, digital photographs were taken of all samples. The sediment samples were then split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment, which were subsequently discarded. The <1mm fraction of the sample was analysed using a Malvern Mastersizer 2000. The second sub-sample was oven dried (at 85°C) for 24 hours, weighed, then passed through a nest of sieves (8mm, 5.5mm, 4mm, 2mm, 1.4mm & 1mm). The residue in each sieve, including the <1mm fraction was then weighed. Data generated from these methods of analysis were merged and used to derive statistics such as mean grain size, bulk sediment classes (% silt, sand & gravel), skewness and sorting coefficient. The ratio of sand to silt was calculated and the percentage of gravel added in order to determine the sediment type according to Folk (1954) (Figure 2).

Figure 2. Folk Classification (British Geological Survey, 2004).

2.2.3.2 Contaminant Analysis

All sediment samples for subsequent contaminant analysis were couriered to UKAS accredited Alcontrol laboratories for analysis. Analysis methods and results are provided in Annex 4.

3. RESULTS

3.1 Water Quality

Table 1. Summary of water quality data

	Tempe	rature C	Salin	ity ppt	рН		
Core ID	Min	Max	Min	Max	Min	Max	
VC02	18.51	18.56	19.50	19.77	7.80	7.80	
VC06	18.50	18.51	20.13	20.15	7.84	7.85	
VC07	18.51	18.54	19.34	20.87	7.80	7.80	
VC08	17.80	17.89	22.46	30.26	7.86	7.88	
VC09	18.66	18.67	19.81	19.86	7.81	7.82	
VC10	18.69	18.70	20.66	20.70	7.85	7.86	
VC11	18.69	18.70	21.87	21.92	7.86	7.88	
VC12	17.85	17.93	29.03	29.96	7.85	7.87	
VC13	17.92	17.95	28.97	29.28	7.87	7.89	
VC14	17.95	17.98	23.15	28.19	7.63	7.78	
VC15	17.91	17.93	28.23	29.02	7.81	7.83	
VC16	18.66	18.68	19.41	19.75	7.82	7.83	
VC17	18.04	18.39	26.17	29.97	7.86	7.89	
VC18	18.48	18.53	25.88	25.97	7.81	7.82	
VC19	18.36	18.38	25.82	27.27	7.67	7.69	
VC20	18.25	18.37	27.04	28.36	7.80	7.81	
VC22	18.65	18.69	18.64	19.92	7.77	7.84	
VC24	18.31	18.45	27.33	27.88	7.84	7.88	
VC25	18.17	18.34	27.66	28.89	7.86	7.88	
VC27	18.27	18.32	25.66	25.84	7.82	7.85	
VC28	18.66	18.66	20.30	20.35	7.82	7.83	
VC29	18.61	18.63	25.04	25.19	7.79	7.81	
VC30	18.53	18.67	21.99	22.64	7.83	7.86	

NB: Full water quality data is provided in Excel format on a CD at the back of the report.

The samples were all similar in chemistry, a small temperature band of 17.8 to 18.7 through the profile was observed with the higher temperature being at the surface as expected at this time of year.

Salinity is generally higher at depth becoming slightly lower at the surface. However, a reading taken at one location at a depth of 15.5m displayed a lower salinity in respect of the surrounding figures potentially suggesting outfall water flowing with a deep water current.

The pH readings were more variable ranging from 7.64 to 8.01 across the sample site. The mixing of the water and flow rate would influence these results greatly, as would the proximity of outfalls. The pH generally reduces slightly from the sea bed to the surface. Readings from each site remained relatively stable with a maximum pH range of 0.08. An average pH range of 0.02 was observed across the sample site profiles.

There are no specific patterns between the chemical characteristics of the water and the position of sample (distance from shore and depth) reflecting the considerable mixing of the water column found in the Humber. The positions closer to shore are heavily influenced by sediment disruption on the rising and lowering tide particularly during adverse weather conditions which in turn affects the chemical release from the sediment. With this considered, in addition to the presence of various outfalls along the test site, it is expected that the composition, movement and characteristics of chemical components in the area are likely to be changeable.

3.2 Sediment Quality

3.2.1 SAMPLE LOCATIONS

Figure 3 presents the intertidal survey sampling stations at which samples were collected for Particle Size Analysis (PSA) and a range of contaminants. The positions of the sampling stations are presented in Table 2.

Figure 3 Intertidal survey sampling stations

NB: The locations and depths of the subtidal sampling stations are presented in Table 8.

Figure 4: The location of the 30 subtidal sampling stations.

Figure 5. Vibracore sample locations

3.2.2 SURVEY LOGS

Table 2. Subtidal Survey Log

Station	5 .		Sea		Depth	Position (WGS 84)	<u> </u>
No.	Date	Time	State	Attempt	(m)	Lat	Long	Description
1	04/05/2010	11:36	Calm	1st	10.4	53.67483	0.22367	Muddy sand
2	04/05/2010	11:44	Calm	1st	7.9	53.67433	0.24100	Mud
3	04/05/2010	11:58	Calm	2nd	14.1	53.67033	0.23383	Mud
4	04/05/2010	12:05	Calm	1st	12.6	53.66783	0.22950	Muddy sand
5	04/05/2010	12:13	Calm	1st	12.6	53.66683	0.21617	Mud & clay
6	04/05/2010	12:18	Calm	1st	11.3	53.66450	0.22467	Muddy sand
7	04/05/2010	12:25	Calm	1st	11.5	53.66433	0.22767	Mud
8	04/05/2010	12:28	Calm	1st	7.7	53.66050	0.22567	Mud
9	04/05/2010	12:43	Calm	1st	12.2	53.66100	0.22317	Clay with surface layer of sand
10*	04/05/2010	12:40	Calm	1st	12.3	53.66150	0.21833	Sandy mud
11*	04/05/2010	13:40	Calm	1st	13.6	53.65917	0.21450	Sandy mud
12*	04/05/2010	12:50	Calm	1st	10.9	53.65800	0.21850	Medium sand
13	04/05/2010	13:07	Calm	1st	8.5	53.65850	0.22300	Muddy sand
14	04/05/2010	13:22	Calm	1st	7	53.65683	0.22133	Mud
15	04/05/2010	13:44	Calm	1st	11	53.65633	0.21683	Medium sand
16	04/05/2010	13:37	Calm	1st	12.8	53.65767	0.21183	Sand with compacted clay
17*	04/05/2010	13:28	Calm	1st	11.6	53.66067	0.20450	Muddy sand
18*	04/05/2010	14:20	Calm	3rd	10.6	53.65650	0.21067	Medium sand
19*	04/05/2010	13:56	Calm	1st	10.5	53.65433	0.21417	Muddy sand
20	04/05/2010	14:09	Calm	1st	10	53.65533	0.21650	Medium sand
21	04/05/2010	14:29	Calm	3rd	9.4	53.65367	0.21483	Muddy sand
22	04/05/2010	15:02	Calm	1st	10.2	53.65250	0.21233	Sand with compacted clay
23	04/05/2010	14:58	Calm	1st	10.9	53.65317	0.21217	Muddy sand with coal fragments
24	04/05/2010	14:53	Calm	3rd	11.3	53.65467	0.20967	Muddy sand with coal fragments
25	04/05/2010	15:14	Calm	2nd	11.2	53.65383	0.20033	Sandy mud
26	04/05/2010	15:18	Calm	1st	12.5	53.65183	0.20383	Sand with coal fragments
27	04/05/2010	15:29	Calm	1st	12.9	53.64983	0.20900	Sand with coal fragments
28	04/05/2010	15:36	Calm	2nd	12.1	53.64733	0.19983	Clay with a surface layer of sand
29	04/05/2010	15:44	Calm	1st	12.9	53.64417	0.19250	Clay with a surface layer of sand
30	04/05/2010	16:03	Calm	4th	11.6	53.63783	0.18333	Sand with shell & coal fragments

 $[\]hbox{* Sample collected from contaminant analysis}\\$

Table 3. Positions of the intertidal sampling stations

Transect	Latitude	Longitude	Transect	Latitude	Longitude
Transect 1 Upper	53.62759000	-0.17963200	Transect 7 Upper	53.65738200	-0.22699400
Transect 1 Middle	53.62829200	-0.17871100	Transect 7 Middle	53.65780000	-0.22606400
Transect 1 Lower	53.62879600	-0.17791200	Transect 7 Lower	53.65804100	-0.22551400
Transect 2 Upper	53.64520300	-0.21247000	Transect 8 Upper	53.65980500	-0.22945900
Transect 2 Middle	53.64588100	-0.21060200	Transect 8 Middle	53.66007400	-0.22856000
Transect 2 Lower	53.64653500	-0.20916900	Transect 8 Lower	53.66035000	-0.22829600
Transect 3 Upper	53.64926400	-0.21828200	Transect 9 Upper	53.66196200	-0.23130500
Transect 3 Middle	53.65011100	-0.21679200	Transect 9 Middle	53.66218000	-0.23068800
Transect 3 Lower	53.65069400	-0.21513400	Transect 9 Lower	53.66234400	-0.23053600
Transect 4 Upper	53.65212600	-0.22162700	Transect 10 Upper	53.66283100	-0.23213700
Transect 4 Middle	53.65277000	-0.22021100	Transect 10 Middle	53.66300500	-0.23196800
Transect 4 Lower	53.65334900	-0.21897000	Transect 10 Lower	53.66307000	-0.23155300
Transect 5 Upper	53.65349300	-0.22316400	Transect 11 Upper	53.66721800	-0.23849100
Transect 5 Middle	53.65407700	-0.22174600	Transect 11 Middle	53.66765500	-0.23822700
Transect 5 Lower	53.65456000	-0.22101600	Transect 11 Lower	53.66797500	-0.23752500
Transect 6 Upper	53.65552300	-0.22549500	Transect 12 Upper	53.66994200	-0.24337800
Transect 6 Middle	53.65612700	-0.22414800	Transect 12 Middle	53.67043900	-0.24247300
Transect 6 Lower	53.65640200	-0.22344100	Transect 12 Lower	53.67071900	-0.24224300

Table 4. Site and sample descriptions from the intertidal survey (Friday 14th May 2010)

Transect	Time	Sediment type	Biological surface features	Weather	Diatoms present	Human activities
Transect 1 Upper	12:59:53	Mud	Hediste burrows and tracks. Evidence of feeding birds	Cloudy	Yes	No
Transect 1 Middle	13:04:25	Mud	Evidence of feeding birds	Cloudy/ Sunny intervals	Yes	No
Transect 1 Lower	13:08:16	Mud	Evidence of feeding birds	Cloudy/ Sunny intervals	Yes	No
Transect 2 Upper	13:25:16	Cracked mud-anoxic	Hediste burrows and tracks Evidence of feeding birds	Cloudy/ Sunny intervals	Yes but only in surface pools	No
Transect 2 Middle	12:14:55	Mud	Evidence of feeding birds	Sunny	Yes	No
Transect 2 Lower	12:26:55	Mud	Nothing visible	Cloudy/ Sunny intervals	No	No
Transect 3 Upper	14:28:25	Mud	Hediste burrows and tracks Evidence of feeding birds	Sunny	Yes	No
Transect 3 Middle	12:07:49	Mud	Corophium feeding on the surface	Sunny	Yes	No
Transect 3 Lower	13:31:35	Mud	Nothing	Sunny	Yes	No
Transect 4 Upper	14:34:54	Mud	Corophium feeding on the surface Evidence of feeding birds	Cloudy	Yes	No
Transect 4 Middle	12:05:08	Mud	Corophium feeding on the surface	Cloudy	No	No
Transect 4 Lower	13:37:19	Mud	Nothing	Cloudy	Yes	No
Transect 5 Upper	14:39:25	Mud	Hediste feeding holes and tracks Evidence of feeding birds	Sunny	Yes	No
Transect 5 Middle	11:57:15	Mud	Corophium feeding on the surface Evidence of feeding birds	Cloudy	No	No
Transect 5 Lower	13:41:43	Mud	Nothing	Sunny	No	No
Transect 6 Upper	14:43:26	Mud	Hediste feeding holes Evidence of feeding birds	Sunny	Yes	No
Transect 6 Middle	11:48:11	Mud	Nothing	Sunny	No	No

Transect	Time	Sediment type	Biological surface features	Weather	Diatoms present	Human activities
Transect 6 Lower	13:48:31	Mud	Nothing	Cloudy	No	No
Transect 7 Upper	14:52:29	Mud	Evidence of <i>Hediste/ Corophium</i> feeding Evidence of feeding birds	Sunny	Yes	No
Transect 7 Middle	11:42:27	Mud	Evidence of Hediste/ Corophium feeding	Sunny	Yes	No
Transect 7 Lower	13:52:05	Mud	Nothing	Cloudy	No	No
Transect 8 Upper	14:57:41	Mud	Hediste feeding holes and tracks	Sunny	Yes	No
Transect 8 Middle	11:34:54	Mud	Corophium feeding tracks	Sunny	Yes	No
Transect 8 Lower	13:58:29	Mud	Macoma burrow and feeding arrangement	Sunny	No	No
Transect 9 Upper	15:04:43	Mud	Hediste burrows and tracks/ Corophium feeding	Cloudy	Yes	No
Transect 9 Middle	11:29:04	Mud	Corophium feeding	Sunny	No	No
Transect 9 Lower	14:02:05	Mud	Corophium feeding	Sunny	Yes	No
Transect 10 Upper	15:09:53	Mud	Hediste burrows and tracks/ Corophium feeding	Cloudy	Yes	No
Transect 10 Middle	11:20:24	Mud	Nothing	Sunny	No	No
Transect 10 Lower	14:06:15	Mud	Macoma burrow and feeding arrangement	Sunny	Yes	No
Transect 11 Upper	15:20:23	Mud	Hediste feeding holes and tracks/ Corophium feeding	Cloudy	Yes	No
Transect 11 Middle	11:13:50	Mud	Corophium feeding/ possibly Hediste	Cloudy	Yes	No
Transect 11 Lower	14:11:29	Mud	Macoma burrow and feeding arrangement	Cloudy	No	No
Transect 12 Upper	15:27:26	Mud	Hediste feeding holes and tracks/ Corophium feeding Evidence of feeding birds	Cloudy	Yes	No
Transect 12 Middle	11:03:46	Mud	Corophium feeding	Cloudy	No	No
Transect 12 Lower	14:16:48	Mud	Corophium feeding	Sunny	No	No

Table 5. Vibracore survey log

Sample	Date	Time (LITC)	Position ((WGS 84)
No.	Date	Time (UTC)	Northerly	Westerly
VC 1	15 July 2010	14:46	53 38.616	00 11.849
VC2	15 July 2010	15:10	53 38.6970	00 11.726
VC3	15 July 2010	14:30	53 38.767	00 12.110
VC6	15 July 2010			
VC7	15 July 2010	15:00	53 38.9870	000 12.6171
VC8	15 July 2010	09:06	53 39.314	000 12.222
VC11	14 July 2010	12:54	53 39.0688	000 12.7573
VC12	15 July 2010	08:38	53 39.3953	000 12.3680
VC13	15 July 2010	09:38	53 39.3112	000 12.5067
VC15	15 July 2010	07:57	53 39.5276	000 12.4988
VC16	14 July 2010	15:00	53 39. 2951	000 12.7809
VC17	14 July 2010	07:49	53 39.2126	000 13.8828
VC18	14 July 2010	10:20	53 39.1477	000 12.9976
VC19	14 July 2010	06:30	53 39.0911	000 13.0700
VC20	14 July 2010	07:07	53 39.1731	000 13.1888
VC22	14 July 2010	14:30	53 39.4343	000 13.0178
VC24	14 July 2010	09:22	53 39.2942	000 13.2604
VC27	14 July 2010	10:45	53 39.6063	000 13.3816
VC28	14 July 2010	08:25	53 39.5790	000 13.2606
VC29	14 July 2010	11:05	53 39.4393	000 13.3955
VC30	15 July 2010	13:15	53 39.6787	000 13.4782

NB: Position VC6 was not acquired due to time restraints.

3.2.3 PARTICLE SIZE ANALYSIS DATA

A summary of the particle size analysis data is provided in Tables 6 & 7, with full details provided in Gradistat format for each sample (Excel spreadsheet) on CD at the back for this report.

The Gradistat output provides the following parameters:

- mean and median grain size (in ϕ and $\mu m)$ (measures of average and central tendency);
- sorting coefficient (the standard deviation or variability about the mean of the sample);
- skewness (degree of departure from a normal distribution in terms of asymmetry);
- Kurtosis (degree of departure from a normal distribution in terms of peakedness). This is indicative of the concentration of the particles relative to the mean;
- bulk sediment classes (% silt, sand and gravel).

(analysis is usually based on logarithmic Folk and Ward graphical measures (relating to φ))

Particle sizes in the summary tables below are presented as phi (ϕ) values, according to the Wentworth Scale, and that an increasing value of phi indicates a decrease in particle size.

The Wentworth scale combines numerical intervals with rational definitions of particle size (e.g. fine, sand, coarse silt etc). It is geometric, based on a dimension of 1 mm and a ratio of 2 and conversion between mm and phi is achieved as follows (Bale & Kenny, 2005)³:

$$\varphi = -\frac{\log_{10} mm}{\log_{10} 2}$$

Full details of the classifications for sorting, skewness and kurtosis can be found in Blott & Pye (2001)⁴.

Table 6. Summary of PSA results from subtidal surface samples

Station No.	Mean φ	Mean µm	% Gravel	% Sand	% Mud	Sediment name	Textural group
1	2.492	177.8	0.0%	95.9%	4.1%	Moderately Sorted Fine Sand	Sand
2	5.849	17.35	0.0%	21.2%	78.8%	Very Fine Sandy Medium Silt	Sandy Mud
3	4.907	33.34	0.0%	43.5%	56.5%	Very Fine Sandy Medium Silt	Sandy Mud
4	3.797	71.95	0.0%	70.9%	29.1%	Very Coarse Silty Fine Sand	Muddy Sand
5	6.236	13.26	0.0%	14.4%	85.6%	Very Fine Sandy Fine Silt	Sandy Mud
6	2.944	130.0	0.0%	77.5%	22.5%	Fine Silty Medium Sand	Muddy Sand
7	4.274	51.68	0.0%	60.4%	39.6%	Very Coarse Silty Very Fine Sand	Muddy Sand
8	5.910	16.64	0.0%	18.8%	81.2%	Very Fine Sandy Fine Silt	Sandy Mud
9	5.770	18.33	0.0%	20.3%	79.7%	Very Fine Sandy Fine Silt	Sandy Mud
10	5.014	30.96	0.0%	41.0%	59.0%	Very Fine Sandy Fine Silt	Sandy Mud
11	6.056	15.03	0.0%	15.0%	85.0%	Very Fine Sandy Fine Silt	Sandy Mud
12	1.879	271.8	1.6%	83.8%	14.6%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
13	3.305	101.2	0.0%	70.5%	29.5%	Fine Silty Medium Sand	Muddy Sand
14	6.071	14.88	0.0%	14.2%	85.8%	Very Fine Sandy Fine Silt	Sandy Mud
15	3.181	110.3	0.2%	71.1%	28.7%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
16	3.366	97.02	2.2%	60.5%	37.3%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
17	4.474	44.99	0.7%	44.5%	54.9%	Slightly Very Fine Gravelly Medium Sandy Medium Silt	Slightly Gravelly Sandy Mud
18	3.405	94.39	0.0%	69.9%	30.1%	Fine Silty Medium Sand	Muddy Sand
19	2.909	133.2	3.0%	69.6%	27.3%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
20	3.296	101.8	0.9%	68.2%	30.9%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
21	3.734	75.15	0.0%	59.8%	40.2%	Fine Silty Medium Sand	Muddy Sand
22	2.681	155.9	0.5%	78.7%	20.8%	Slightly Very Fine Gravelly Fine Silty Medium Sand	Slightly Gravelly Muddy Sand
23	3.122	114.9	2.9%	65.0%	32.0%	Slightly Very Fine Gravelly Very Coarse Silty Medium Sand	Slightly Gravelly Muddy Sand
24	2.315	201.0	0.0%	83.6%	16.4%	Fine Silty Medium Sand	Muddy Sand
25	4.969	31.92	0.0%	43.2%	56.8%	Very Fine Sandy Very Coarse Silt	Sandy Mud
26	2.490	177.9	6.7%	72.2%	21.1%	Very Fine Gravelly Fine Silty Medium Sand	Gravelly Muddy Sand
27	3.671	78.50	7.6%	52.3%	40.1%	Medium Gravelly Fine Silty Medium Sand	Gravelly Muddy Sand
28	4.338	49.45	0.0%	47.5%	52.5%	Medium Sandy Very Coarse Silt	Sandy Mud
29	0.220	858.5	46.7%	31.0%	22.3%	Fine Silty Sandy Coarse Gravel	Muddy Sandy Gravel
30	0.162	893.7	22.7%	70.6%	6.7%	Fine Gravelly Coarse Sand	Gravelly Sand

-

³ Bale, A.J. & Kenny, A.J. 2005. Sediment analysis and seabed characterisation. In Eleftheriou, A. & McIntyre, A (Eds). Methods for the study of marine benthos (3rd edition). pp 43-86.

⁴ Blott, S.J. & Pye, K. 2001. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 26: 1237-1248.

Table 7. Summary of PSA results from intertidal surface samples

i abie 7	able 7. Summary of PSA results from intertidal surface samples										
Transect	Shore position	Mean φ	Mean µm	% Gravel	% Sand	% Mud	Sediment name	Textural group			
1	Upper	5.880	16.98	0.0%	14.5%	85.5%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
1	Middle	6.255	13.10	0.0%	10.5%	89.5%	Very Fine Sandy Fine Silt	Sandy Mud			
1	Lower	5.772	18.31	0.0%	19.0%	81.0%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
2	Upper	6.379	12.02	0.0%	7.5%	92.5%	Medium Silt	Mud			
2	Middle	6.326	12.47	0.0%	6.9%	93.1%	Medium Silt	Mud			
2	Lower	4.617	40.74	0.0%	48.5%	51.5%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
3	Upper	6.774	9.139	0.0%	4.5%	95.5%	Fine Silt	Mud			
3	Middle	5.461	22.70	0.0%	20.6%	79.4%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
3	Lower	5.893	16.83	0.0%	14.5%	85.5%	Very Fine Sandy Coarse Silt	Sandy Mud			
4	Upper	6.616	10.20	0.0%	5.5%	94.5%	Medium Silt	Mud			
4	Middle	5.864	17.17	0.0%	15.5%	84.5%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
4	Lower	5.908	16.65	0.0%	12.4%	87.6%	Very Fine Sandy Coarse Silt	Sandy Mud			
5	Upper	6.416	11.71	0.0%	7.5%	92.5%	Medium Silt	Mud			
5	Middle	5.847	17.38	0.0%	16.0%	84.0%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
5	Lower	5.839	17.47	0.0%	17.3%	82.7%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
6	Upper	6.654	9.930	0.0%	5.2%	94.8%	Medium Silt	Mud			
6	Middle	5.608	20.51	0.0%	20.3%	79.7%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
6	Lower	5.618	20.36	0.0%	23.8%	76.2%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
7	Upper	6.122	14.36	0.0%	8.4%	91.6%	Coarse Silt	Mud			
7	Middle	4.828	35.22	0.0%	42.4%	57.6%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
7	Lower	5.878	17.01	0.0%	16.8%	83.2%	Very Fine Sandy Medium Silt	Sandy Mud			
8	Upper	6.459	11.37	0.0%	6.9%	93.1%	Medium Silt	Mud			
8	Middle	5.605	20.54	0.0%	19.9%	80.1%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
8	Lower	6.050	15.09	0.0%	11.5%	88.5%	Very Fine Sandy Coarse Silt	Sandy Mud			
9	Upper	6.249	13.15	0.0%	8.7%	91.3%	Medium Silt	Mud			
9	Middle	5.764	18.41	0.0%	17.3%	82.7%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
9	Lower	6.148	14.10	0.0%	10.4%	89.6%	Very Fine Sandy Coarse Silt	Sandy Mud			
10	Upper	6.120	14.37	0.0%	13.3%	86.7%	Very Fine Sandy Fine Silt	Sandy Mud			
10	Middle	6.087	14.71	0.0%	13.3%	86.7%	Very Fine Sandy Medium Silt	Sandy Mud			
10	Lower	5.133	28.49	0.0%	29.3%	70.7%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
11	Upper	5.541	21.48	0.0%	19.3%	80.7%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
11	Middle	5.158	28.00	0.0%	29.8%	70.2%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
11	Lower	6.041	15.19	0.0%	12.6%	87.4%	Very Fine Sandy Coarse Silt	Sandy Mud			
12	Upper	6.687	9.708	0.0%	6.7%	93.3%	Fine Silt	Mud			
12	Middle	5.397	23.73	0.0%	23.2%	76.8%	Very Fine Sandy Very Coarse Silt	Sandy Mud			
12	Lower	5.879	16.99	0.0%	14.1%	85.9%	Very Fine Sandy Very Coarse Silt	Sandy Mud			

3.2.4 CONTAMINANT ANALYSIS DATA

Full details of analytical findings have been provided by Alcontrol and can be found in Annex 4. Table 8 gives a brief summary of contaminant readings.

Table 8. Summary of contaminant data from subtidal surface samples (collected via Hamon grab), intertidal surface samples (collected via hovercraft) and subtidal subsurface samples (collected via Vibracore)

(conected via vibracore)		Intertidal (Surface)		Subtidal	(Surface)	Subtidal (Vibracore)	
Component	Unit	Min	Max	Min	Max	Min	Max
TPH/Oils and Greases	mg/kg	<10	121	40.2	145		
PCB congener 28	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 52	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 77	μg/kg					<3	<3
PCB congener 81	μg/kg					<3	<3
PCB congener 101	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 105	μg/kg					<3	<3
PCB congener 114	μg/kg					<3	<3
PCB congener 118	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 123	μg/kg					<3	<3
PCB congener 126	μg/kg					<3	<3
PCB congener 138	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 153	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 156	μg/kg					<3	<3
PCB congener 157	μg/kg					<3	<3
PCB congener 167	μg/kg					<3	<3
PCB congener 169	μg/kg					<3	<3
PCB congener 180	μg/kg	<3	<3	<3	<3	<3	<3
PCB congener 189	μg/kg					<3	<3
PCB's Total WHO 12	μg/kg					<3	<3
PCBs, Total ICES 7	μg/kg	<3	<3	<3	<3	<3	<3
Arsenic	mg/kg	13.8	18.9	14.3	29.6	3.38	30.9
Cadmium	mg/kg	0.296	0.533	0.185	0.44	0.141	0.469
Chromium	mg/kg	31.6	45.7	10.7	35.4	4	42.5
Copper	mg/kg	23.5	31.4	7	49.9	3.16	26.6
Lead	mg/kg	35.4	54.6	26.7	57.7	2.34	48.8
Mercury	mg/kg	<0.14	<0.14	<0.14	0.177	<0.14	<0.14
Nickel	mg/kg	22.1	32.4	10.2	19	4.13	28.4
Selenium	mg/kg					<1	1.1
Zinc	mg/kg	112	145	66.7	115	13.1	131
Naphthalene-d8 % recovery**	%	88.3	101	108	111	88.6	110
Acenaphthene-d10 % recovery**	%	88.4	103	107	111	88.3	107
Phenanthrene-d10 % recovery**	%	87.4	102	102	110	79	109
Chrysene-d12 % recovery**	%	83.8	99.2	97.2	108	73.7	101
Perylene-d12 % recovery**	%	82.1	98.1	104	117	76	107
Naphthalene	μg/kg	150	237	52.6	177	<9	112
Acenaphthylene	μg/kg	19.9	28.3	<12	27.5	<12	43.6
Acenaphthene	μg/kg	29.8	50.9	18.5	41.4	<8	54.8
Fluorene	μg/kg	46.7	72.4	25.4	72.4	<10	75
Phenanthrene	μg/kg	251	406	127	264	<15	287
Anthracene	μg/kg	62	111	38.5	95.2	<16	127
Fluoranthene	μg/kg	304	507	165	377	<17	433
Pyrene	μg/kg	291	464	162	347	<15	375
Benz(a)anthracene	μg/kg	169	282	90	268	<14	237
Chrysene	μg/kg	152	243	79.4	189	<10	186
Benzo(b)fluoranthene	μg/kg	251	377	136	296	<15	353
Benzo(k)fluoranthene	μg/kg	95.5	139	52	119	<14	113
Benzo(a)pyrene	μg/kg	167	258	118	278	<15	250
Indeno(1,2,3-cd)pyrene	μg/kg	109	154	59.5	148	<18	142
Dibenzo(a,h)anthracene	μg/kg	<23	48.6	<23	43.32	<23	45.7
Benzo(g,h,i)perylene	μg/kg	166	229	77.5	205	<24	213
Polyaromatic hydrocarbons, Total USEPA 16	μg/kg	2260	3590	1230	2860	<118	2980

Table 8 (Continued). Summary of contaminant data

		Intertida	(Surface)	Subtidal	(Surface)	Subtidal (Vibracore)
Component	Unit	Min	Max	Min	Max	Min	Max
GRO >C5-C12	μg/kg					<44	848
Benzene	μg/kg					<10	<20
Ethylbenzene	μg/kg					<3	35.7
Toluene	μg/kg					<2	13.8
m,p-Xylene	μg/kg					<6	33.4
o-Xylene	μg/kg					<3	20.7
m,p,o-Xylene	μg/kg					<10	54.1
BTEX, Total	μg/kg					<10	104
Methyl tertiary butyl ether (MTBE)	μg/kg					<5	<10
Tributyl tin*	mg/kg					<0.02	<0.02
Triphenyl tin*	mg/kg					<0.05	< 0.05
DibutyI tin*	mg/kg					<0.02	<0.02
Tetrabutyl tin*	mg/kg					< 0.02	< 0.02

4. SUMMARY

A review of the water and sediment quality data is not included within the scope of the work for this project. However, in order to assess water and sediment quality in the Humber estuary, IECS would recommend comparing the results documented in this report with water and sediment quality standards such as the EA EQS for water and the Canadian sediment quality guidelines (ISQG) for sediments.

ANNEX 1. INTERTIDAL BENTHIC SURVEY PHOTOS

Transect 1 – view from the lower shore

Transect 1 Upper

Transect 1 Middle

Transect 1 Lower

Transect 2 – view from the lower shore

Transect 2 Upper

Transect 2 Middle

Transect 2 Lower

Transect 3 – view from the lower shore

Transect 3 Upper

Transect 3 Middle

Transect 3 Lower

Transect 4 – view from the lower shore

Transect 4 Upper

Transect 4 Middle

Transect 4 Lower

Transect 5 – view from the lower shore

Transect 5 Upper

Transect 5 Middle

Transect 5 Lower

Transect 6 - view from the lower shore

Transect 6 Upper

Transect 6 Middle

Transect 6 Lower

Transect 7 – view from the lower shore

Transect 7 Upper

Transect 7 Middle

Transect 7 Lower

Transect 8 - view from the lower shore

Transect 8 Upper

Transect 8 Middle

Transect 8 Lower

Transect 9 - view from the lower shore

Transect 9 Upper

Transect 9 Middle

Transect 9 Lower

Transect 10 – view from the lower shore

Transect 10 Upper

Transect 10 Middle

Transect 10 Lower

Transect 11 - view from the lower shore

Transect 11 Upper

Transect 11 Middle

Transect 11 Lower

Transect 12 - view from the middle shore

No photo taken

Transect 12 Upper

Transect 12 Middle

Transect 12 Lower

ANNEX 2. SUBTIDAL BENTHIC SAMPLE PHOTOS

ANNEX 3. PARTICLE SIZE ANALYSIS RESULTS

INTERTIDAL

Aperture	Class Weight	Retained (g o	r %) in Differer	nt Samples															
(microns) Sample Identi	ty: 1u	1m	11	2u	2m	21	3u	3m	31	4u	4n		41	5u	5m	51	6u	6m	61
Analy	,	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IEC		IECS	IECS	IECS	IECS	IECS	IECS	IECS
Da		25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010				5/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010
Initial Sample Weig		100	100	100	100	100	100	100	100	100	10		100	100	100	100	100	100	100
45000	0	1 0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
31500	0	1 0																	0
		1 0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
22400	0	1 0	0	0	0	0	0	0	0	0	0		0	0	0	0	•	0	0
16000	0	4 ~	0	ŭ	0	•	0	•	•	•	•		0	ŭ	0	0	0	0	0
11200	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
8000	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
5600	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
4000	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2800	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
1400	0	0	0	0	0	0	0	0	0	0	0.113		0	0	0	0	0.006597	0	0
1000	0	0	0	0	0	0.008956	0	0	0	0	0.262		0	0	0.08217	0	0.078631	0	0
500	0	0.01122	0	0	0	0.867127	0	0	0.031828	0	0.683		0	0	0.607682	0	0.46586	0.177716	0
250	0.950998	0.801493	0.4594	0.738962	0.241677	1.169764	0.098365	0	0.513475	0.588695	0.271	1031 0	0.395068	0.582637	0.716892	0.466192	0.493989	0.86785	0.835128
125	2.131753	1.462967	3.140578	1.43667	0.578394	11.677096	1.288263	2.215765	2.097949	1.06254	1.642	2927 1	1.502291	1.237188	1.995068	2.796963	0.627207	3.183335	4.67239
63	11.154628	8.065898	15.169353	5.160529	5.903622	34.511934	3.060043	18.10329	11.629182	3.764317	12.260	0074 10	0.318279	5.562053	12.376579	13.786917	3.45992	15.816796	18.050578
31	21.942686	15.435182	19.902088	13.051615	14.892717	23.59049	8.54624	27.601916	19.596158	10.144481	20.524	4756 20	0.167368	13.344037	20.511457	18.718554	10.446753	22.571821	19.851982
16	19.857209	17.581533	15.842356	19.844462	19.377008	7.069044	17.158252	17.890654	19.007569	18.504676	18.05	5803 20	0.660343	19.014279	18.102581	16.429757	18.628985	17.088987	13.385734
8	14.698406	19.220643	15.94866	21.848438	21.721362	6.75091	23.372571	11.863415	17.938237	23.707265	16.65	1976 18	8.645103	20.964255	16.286883	17.931748	22.530963	14.494154	14.39696
4	14.30008	19.73171	15.987445	20.683299	21.213902	7.388787	24.284699	11.651784	16.243292	23.086742	16.194	4194 16	6.339024	20.752973	15.847712	17.362299	22.542192	14.052099	15.366958
2	11.023352	13.669213	10.565437	13.679908	13.065962	5.170805	17.125283	8.101842	10.102499	15.014497	10.44	1151 9	9.65416	14.332887	10.505342	10.219956	15.914994	9.172135	10.344207
1	3.695819	3.933966	2.925702	3.545193	2.956111	1.723484	4.976834	2.424295	2.760806	4.060592	2.823	3663 2	2.276201	4.126313	2.900749	2.254127	4.707831	2.509365	3.01113
0.49	0.245069	0.086175	0.058981	0.010924	0.049245	0.071603	0.08945	0.147039	0.079005	0.066195	0.072	2698 0	0.042163	0.083378	0.066885	0.033487	0.096078	0.065742	0.084933
		4																	
7u						9u 9		91 10			101	11u	11m						
IECS						CS IE					ECS	IECS	IECS						
			6/2010 25/06			5/2010 25/06						25/06/2010							
100						00 10					100	100	100	100				0	
0					-	0 () (0	0	0	0	0	0	0	0		
0	-	-	-	0	•	0 () (0	0	0	0	0	0	0	0		
0	-	-	-	0	-	0 () (0	0	0	0	0	0	0	0		
0	-	-	-	0	0	0 () (0	0	0	0	0	0	0	0		
0	0	-	-	0	0	0 () (0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0 () () ()	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0 () () ()	0	0	0	0	0	0	0	0		
0	0	0	-	0	0	0 () () ()	0	0	0	0	0	0	0	0		
0	0	-	-	0	0	0 () (0	0	0	0	0	0	0	0		
0	•	-	•	0	•	0 () (•	0	0	0	0	0	0	•	•		
0 0	.063685	0	0.08	88269	0	0.00	6856 () (0.12	28139	0	0	0	0	0.227	182 0.056	968 0		
0 0				34886		0 0.07) (13043	0	0	0	0	0.414				
0 1	.794967	0 0.05	3158 0.81	0231	0	0 0.52	4381 (0.57	3372 0.86	69208	0	0	0.3555	96 0	0.895	832 1.434	1417 0		
0.273512 2	.011509 0.20	06666 0.56	9328 1.00	1986 0.5	96967 0.23	31448 0.98	4083 0.21	833 1.17	694 1.0	4572	0	0.340475	1.0053	53 0.1016	665 0.771	114 2.056	3241 0.127	804	
0.634181 9	.160605 2.65	6881 1.17	75669 2.77	0033 1.6	79431 1.40	06942 2.52	0227 1.10	3092 2.10	9812 2.13	33152 4.0	83761	2.18229	4.7402	31 1.8830	0.908	039 3.51	567 2.113	787	
7.268875 28	3.845179 13.7°	13148 4.96	3434 14.76	66698 9.0	3039 6.92	20683 12.92	8799 8.85	2359 9.23	4826 8.64	13896 24	89581	16.466962	23.3917	99 10.412	756 3.387	553 15.57	8915 11.640	0624	
19.027889 23	3.507736 18.50	00882 12.4	51246 22.7	75864 18.0	31971 15.0	80101 20.90	1983 17.56	34026 16.45	8643 15.2	69087 29.	324694	27.109543	27.6897	68 17.429	717 9.256	789 24.38	2048 21.034	1603	
21.727904 9	.352153 16.0	79991 19.15	57115 17.6	4367 19.5	40059 19.2	38306 18.01	5572 18.42	25487 17.11	2472 17.8	19565 13.9	941903	18.337042	13.7963	23 18.767	675 17.18	0294 17.96	641 19.722	2537	
						30483 16.22		2226 17.81				11.928295							
								0964 18.5				12.064035							
				5004 44.0	00000 40.5	40504 0.74		00004 40.00			05005	0.705045	7.0470	00 44 000	000 40.00	1000 7.040		2004	

11.862253

3.472555

0.10213

6.055873

1.884408

0.066693

10.496686

2.305892

0.04672

14.297363

4.00991

0.082997

9.025904

2.459932

0.065394

11.362023

2.861844

0.066722

12.542521

3.133739

0.050942

9.746052

2.574663

0.065689

12.690884

2.878803

0.043829

13.063739

3.813427

0.080271

11.984581

3.230102

6.595095

2.096072

0.173426

8.725245

2.674748

0.171365

7.047933

2.171732

0.129174

11.300886

3.165548

0.091665

16.694033

4.979847

0.070759

7.940193

2.332427

0.074237

10.492924

2.929587

0.078271

SUBTIDAL

Aperture (microns)	Class Weight	Retained (g o	%) in Differe	nt Samples												
Sample Identity:	1	2	3	4	5	6	7	8	9	10	11	12		13	14	15
Analyst:	: IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IECS	IEC		CS	IECS	IECS
Date:	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	25/06/2010	0 25/06/2010	25/06/2010	25/06/2010	25/06/201	10 25/06/201	0 25/06/2	2010 25/06	6/2010 2	5/06/2010	25/06/2010
Initial Sample Weight:	100	100	100	100	100	100	100	100	100	100	100	100		00	100	100
45000	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
31500	0	ő	0	0	0	0	0	0	0	0	0	0		0	0	0
22400	0	ő	0	0	0	0	0	0	0	0	0	0		0	0	0
16000	0	ő	0	0	0	0	0	0	0	0	0	0		0	0	0
11200	0	Ö	0	0	0	0	0	0	0	0	0	0		0	0	0
8000	0	0	0	0	0	0	0	0	0	0	0	0.58215		0	0	0
5600	0	0	0	0	0	0	0	0	0	0	0	0.30213		0	0	0.049823128
4000	0	0	0	0	0	0	0	0	0	0	0	0.1581		0	0	0.019929251
2800	0	0	0	0	0	0	0	0	0	0	0	0.13610		0	0	0.079717005
2000	0	- 0	0	0	0	0	0	0	0	0	0			0	0	
	0	_ ~	•	•	0	0	0	0	0	0		0.39371		0	0	0.054805441
1400	0	0.044136	0.058393	0.064883	•	•	•	-	0	0	0	0.66292		•	-	0.099646256
1000	-	0.096396	0.175287	0.105327	0	0	0.179093	0	-	-	0	0.64609		0	0	0.129540133
500	0.528955	0.573316	1.294497	0.997591	0.137306	9.232617		0	0.440555	0.01473					0.006731	9.579408211
250	24.521372	1.178187	5.603442	11.752946	1.794688	40.2094	6.785281	0.438823	5.710897	5.85952					0.566454	45.88783809
125	51.979995	6.12085	15.905231	30.173954	4.068262	23.776288		4.276907	4.775161	16.41481					2.475658	14.2861256
63	18.871949	13.024084	20.298743	27.695621	8.244357	4.197207		13.905376	9.212751	18.52895					0.963505	1.035224169
31	0.332875	13.446775	10.927907	9.04682	12.309163	4.244972		15.753229	14.989939	12.12540					6.683104	4.751791159
16	1.019287	14.765869	9.099777	3.759254	15.329585	3.557439		14.586378	15.511771	10.02474					6.721031	4.494825853
8	1.007445	17.658629	12.969898	5.270059	18.55633	5.143685		17.472577	17.582978	11.98933					7.831976	6.147983858
4	0.829742	17.676738	13.125568	5.646804	20.505944	5.608914		18.779669	18.064119	13.01003					8.422309	7.248141341
2	0.794507	11.929484	8.387109	4.211449	14.821086	3.32593	5.668338	12.133109	11.285008	9.288498	8 12.505163	3 2.19280	2756 4.99	99313 1	2.754253	4.903271691
1	0.113873	3.405128	2.154148	1.275292	4.171787	0.703548	1.564973	2.641662	2.426821	2.687449	9 3.137169	0.46104	4084 1.11	4282	3.522778	1.231928819
0.49	0	0.080408	0	0	0.061492	0	0	0.01227	0	0.056518	8 0.045695	0		0	0.052201	0
16	17		19	^^												
IECS IE		10	19	20 2	21 2	22	23	24	25	26	27	28	29	30		
ILOO IL						2 2 CS				26 ECS	27 IECS	28 IECS	29 IECS	30 IECS		
	ECS IE	CS IE	CS IE	ECS IE	CS IE	CS	IECS I	ECS IE	CS IE	CS	IECS				10	
25/06/2010 25/0	ECS IE 6/2010 25/0	CS IE 6/2010 25/06	CS IE 5/2010 25/0	ECS IE 06/2010 25/06	CS IE	CS	IECS I 5/06/2010 25/0	ECS IE 6/2010 25/0	CS IE 6/2010 25/0	CS	IECS	IECS	IECS	IECS	10	
25/06/2010 25/06 100 1	ECS IE 6/2010 25/0 100	CS IE 6/2010 25/06 100 1	CS IE 5/2010 25/0	ECS IE 06/2010 25/06 100 1	CS IE 6/2010 25/06 00 1	CS 5/2010 25	IECS I 5/06/2010 25/0	ECS IE 16/2010 25/0 100 1	CS IE 6/2010 25/0	ECS 6/2010 25	IECS 5/06/2010 25	IECS 5/06/2010	IECS 25/06/2010	IECS 25/06/20	10	
25/06/2010 25/06 100 1 0	ECS IE 6/2010 25/0 100 °	CS IE 6/2010 25/06 100 1	CS IE 5/2010 25/0 00	ECS IE 06/2010 25/06 100 1	CS IE 6/2010 25/06 00 1 0	CS 5/2010 25 00	IECS I 5/06/2010 25/0 100	ECS IE 06/2010 25/0 100 1	CS IE 6/2010 25/0 00	ECS 6/2010 25 100	IECS 5/06/2010 25 100	IECS 5/06/2010 100	IECS 25/06/2010 100	IECS 25/06/20 100	10	
25/06/2010 25/06 100 1 0 0	ECS IE 6/2010 25/0 100 2 0	CS IE 6/2010 25/06 100 1 0	CS IE 5/2010 25/0 00	ECS IE 16/2010 25/06 100 1 0	CS IE 6/2010 25/06 00 1 0	CS 5/2010 25 00 0 0	IECS I 5/06/2010 25/0 100 0	ECS IE 16/2010 25/0 100 1 0	CS IE 6/2010 25/0 00 0 0	ECS 6/2010 29 100 0	IECS 5/06/2010 25 100 0	IECS 5/06/2010 100 0	IECS 25/06/2010 100 0 0	IECS 25/06/20 100 0	10	
25/06/2010 25/00 100 1 0 0 0	ECS IE 6/2010 25/0 100 2 0 0 0	ECS IE 6/2010 25/06 100 1 0 0	CS IE 5/2010 25/0 00 0 0	ECS IE 06/2010 25/06 100 1 0 0	CS IE- 6/2010 25/06 00 10 0 0	CS 5/2010 25 00 0 0 0	IECS I 5/06/2010 25/0 100 0 0	ECS IE 16/2010 25/0 100 1 0 0	CS IE 6/2010 25/0 00 0 0 0	ECS 6/2010 29 100 0 0	IECS 5/06/2010 25 100 0 0	IECS 5/06/2010 100 0	IECS 25/06/2010 100 0 0	IECS 25/06/20 100 0 0		
25/06/2010 25/00 100 1 0 0 0 0	ECS IE 6/2010 25/0 100 0 0 0 0 0	ECS IE 6/2010 25/06 100 1 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0	ECS IE 06/2010 25/06 100 1 0 0 0	CS IE: 6/2010 25/06 00 1: 0 : 0 :	CS 5/2010 25. 00 0 0 0 0	IECS I 5/06/2010 25/0 100 0 0 0	ECS IE 6/2010 25/0 100 1 0 0 0	CCS IE 6/2010 25/0 00 0 0 0 0 0 0 1.815	ECS 6/2010 29 100 0 0 0 5491863	IECS 5/06/2010 25 100 0 0 0	IECS 5/06/2010 100 0 0	IECS 25/06/2010 100 0 0 0 32.371484	IECS 25/06/20 100 0 0 0 1.4230979	975	
25/06/2010 25/00 100 1 0 0 0 0 0 0	ECS IE 6/2010 25/0 100 0 0 0 0 0	ECS IE 6/2010 25/06 100 1 0 0 0 0	CS IE 5/2010 25/0 00 00 00 00 00 00 00 00 00 00 00 00 0	ECS IE 06/2010 25/06 100 1 0 0 0 0 0	CS IE/6/2010 25/06/00 1/0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS 5/2010 25, 00 0 0 0 0 0	IECS I 5/06/2010 25/0 100 0 0 0 0 0	ECS IE 6/2010 25/01 100 1 0 0 0 0	CCS IE 5/2010 25/0 00 25/0 0 0 0 0 0 1.815 0 0.772	ECS 6/2010 29 1000 0 0 0 0 0 5491863 2336317 1.4	IECS 5/06/2010 25 100 0 0 0 0 0 408770734	IECS 5/06/2010 100 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0	IECS 25/06/20 100 0 0 0 1.4230979 4.894530	975 757	
25/06/2010 25/0 100 1 0 0 0 0 0 0 0 0 0.504615866	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 0 717627	ECS IE 16/2010 25/06 100 1 0 0 0 0 0 0 0	CS IE- 5/2010 25/06 00 11 0 0 0 0 0 0 0 0	CS 5/2010 25 00 0 0 0 0 0 0 0 0	IECS I 5/06/2010 25/0 100 0 0 0 0 0 0 0 80472839	ECS IE 16/2010 25/0/ 100 1 0 0 0 0 0 0 0	CCS IE 5/2010 25/0 00 25/0 0 0 0 0 0 1.815 0 0.772 0 0.596	ECS 6/2010 29 1000 0 0 0 5491863 2336317 1.4 8805336 1.7	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409	IECS 5/06/2010 100 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789	1ECS 25/06/20 100 0 0 1.4230979 4.8945307 2.208328	975 757 07	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063	ECS IE 6/2010 25/0 100 2 0 0 0 0 0 0 0 0 0 0 0 0 0	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 0 0 717627 457745 0.162	ECS IE 16/2010 25/06 100 1 0 0 0 0 0 0 0 2571587	CS IE- 6/2010 25/06 00 11 0 0 0 0 0 0 0 0 0 0	CS 5/2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS I 5/06/2010 25/0 100 0 0 0 0 0 0 0 80472839 09474824	ECS IE 6/2010 25/0/ 100 1 0 0 0 0 0 0 0 0 0	CCS IE 6/2010 25/0 00 25/0 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702	ECS 6/2010 25 100 0 0 0 6491863 2336317 1.4 8805336 1.7 2123925 0.6	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313	IECS 5/06/2010 100 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0	IECS 25/06/20 100 0 0 0 1.4230975 4.8945307 2.208328 3.4061723	975 757 07 372	
25/06/2010 25/01 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097	ECS IE 6/2010 25/0 100 - 0 0 0 0 0 0 0 0 0 0 0 13122117	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 25/00	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 5571587 5824866	CS IE 5/2010 25/06 00 11 0	CS 5/2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS I 5/06/2010 25/0 100 0 0 0 0 0 80472839 09474824	ECS IE 6/2010 25/0/ 100 1 0 0 0 0 0 0 0 0 0 0	CCS IE	ECS 6/2010 25 1000 0 0 0 5491863 1336317 1.4 1805336 1.7 12123925 0.6 1472855 0.9	IECS 5/06/2010 25 100 0 0 0 0 0 0 408770734 706998409 693024313 954328562	IECS 5/06/2010 100 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0 3.467507274	IECS 25/06/20 100 0 0 0 1.4230975 4.8945307 2.208328 3.4061723 3.753526	975 757 07 372	
25/06/2010 25/01 100 1 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179	ECS IE 6/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 13122117 1110949 9655256	ECS IE 6/2010 25/06 00 1 0 0 0 0 0 0 0 0 0 0 0 0.612 0 0.777 0 0.848	CS IE 25/010 25/000 25/000 25/000 25/000 25/000 25/000 25/0000 25/00000 25/000000 25/0000000 25/0000000000	ECS IE 66/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 2571587 2824866 2772954	CS IEI 5/2010 25/06 00 11 0	CS 5/2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 466556 0.4 61199 0.8	IECS I \$\sigma(06\set2010 25\set6)\$ 100 0 0 0 0 0 80472839 90474824 115087529 166269626	ECS IE 6/2010 25/0 100 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 25/010 25/00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECS 6/2010 25 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 954328562 459895478	IECS 5/06/2010 100 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077	IECS 25/06/20 100 0 0 1.4230979 4.8945307 2.208328 3.406172: 3.753526 3.587217	975 757 07 372 167	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335	ECS IE 6/2010 25/0 00 0 0 0 0 0 0 0 0 1122117 1/110949 16655256 16032775	CCS IE 6/2010 25/06/00 1 00 1 00 0 0 0 0 0 0 0 0 0.612 0 0.078 0 0.777 0 0.848 0 0.706	CS IE 5/2010 25/0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.198 1990862 0.233 119704 0.288	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 5571587 5824866 27772954 3195086	CS IE 5/2010 25/06 00 11 0	CS 5/2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 466556 0.4 61199 0.8	IECS I \$706/2010 25/0 100 0 0 0 0 0 0 0 80472839 09474824 196269626 189640859	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.817 0 1.106	ECS 6/2010 25 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 5/06/2010 25 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674103	IECS 25/06/20 100 0 0 1.4230979 4.8945307 2.208328 3.4061723 3.7535263 3.587217 3.4693270	975 757 07 872 167 38	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0 100 0	CCS IE	CS IE 5/2010 25/0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 105283 0.199 9990862 0.232 119704 0.288	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 2571587 8824866 22772954 31195086 4624053	CS IE/ 5/2010 25/06 00 11 0	CS	IECS I 5/06/2010 25/0 100 0 0 0 0 0 0 80472839 09474824 115087529 66269626 189640859 07020393	ECS IE 6/2010 25/0/ 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702 0 0.817 0 1.108 63001 0.845	ECS 6/2010 29 100 0 0 0 0 4491863 2336317 1.4 8805336 1.7 2123925 0.6 2472855 0.9 3352767 1.4 6609393 1.5 6056295 1.5	IECS 5/06/2010 25 100 0 0 0 0 408770734 706998409 693024313 954328562 459895478 33616678 351965462	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813	IECS 25/06/20 100 0 0 1.4230979 4.8945307 2.208328 3.4061723 3.753526 3.587217 3.4693270 3.8461538	975 757 07 872 167 38 607	
25/06/2010 25/01 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0 0 0 0 13/122117 1110949 16555256 1032775 18887594 5731974	CCS IE 6/2010 25/06 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0.612 0 0.777 0 0.848 0 0.706 0 0.806 0 0.515	CS IE %/2010 25/0 00 0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 105283 0.199 090862 0.232 119704 0.288 939348 0.666	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 2571587 5824866 2772954 1195086 4624053 1370774	CS IE: 5/2010 25/06 00 11 0	CS	IECS I 1 5/06/2010 25/0 25/0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.816 0 0.772 0 0.596 0 0.702 0 0.817 0 1.108 0 0.862 33001 0.842 2018 0.744	ECS 6/2010 29 100 0 0 0 0 4491863 2336317 1.4 8805336 1.7 2123925 0.6 2472855 0.9 3352767 1.4 2609393 1. 2609393 1. 2606463 0.8	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 954328562 459895478 .36616678 351965462 880481709 0	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674103 6.086323957	1ECS 25/06/20 100 0 0 1.423097* 4.894530* 2.208328 3.406172* 3.753526* 3.587217 3.4693270* 3.8461533 3.709317*	975 757 07 38 167 38 507 346 502	
25/06/2010 25/01 100 1 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147	ECS IE 6/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CCS IE 6/2010 25/00 00 1 00 0 0 0 0 0 0 0.612 0 0.078 0 0.777 0 0.848 0 0.706 0 0.806 0 0.515	CS IE %/2010 25/0 00 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.16 60703 0.19 9090862 0.23 119704 0.28 9093948 0.69 67579466 0.66 680892 10.1	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 2571587 2824866 2772954 3195086 4624053 31370774 627566 6.81	CS IE 5/2010 25/06 00 11 0	CS	IECS I 1 5/06/2010 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25/	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.070 0 0.817 0 1.108 0 0.866 53001 0.845 2018 0.741	ECS 6/2010 25 1000 0 0 0 0 0 6491863 3336317 1.4 8805336 1.7 123925 0.6 147472855 0.6 3352767 1.4 60056295 1.5 1260463 0.8 1417595 5.8	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 994328562 459895478 33616678 3351965462 880481709 0 842004509 8	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364	IECS 25/06/20 100 0 0 0 1.4230974 4.8945301 2.208326 3.406172: 3.753526 3.587217 3.4693274 3.8461537 31.054384 31.054484 31.0548484 31.054484 31.054484 31.054484 31.054484 31.054484 31.054484 31.05484 31.054484 31.054484 31.054484 31.054484 31.054484 31.05	975 757 07 372 167 38 607 346 502	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0 0 0 0 1122117 1110949 10655256 1032775 1032775 10387594 1731974 1132248 4.8 1314956 3.6.6	ECS IE 6/2010	CS IE 5/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.198 119704 0.288 193948 0.694 5880892 10.1 030288 34.98	ECS IE	CS IE 5/2010 25/06 00 10 0	CS	IECS I 1 5/06/2010 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25/	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.772 0 0.792 0 0.817 0 0.817 0 0.820 33001 0.845 2018 0.747 45023 16.33	ECS 6/2010 29 100 0 0 0 0 0 6491863 3336317 1.4 6805336 1.7 123925 0.6 7472855 0.9 7472855 0.9 747285 0.9 7472	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 983024313 983024313 351965462 88408678 351965462 884204509 88	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948	IECS 25/06/20 100 0 0 0 0 0 0 1.423097 4.894530 2.208328 3.406172: 3.75352 3.469327 3.8461534 3.709317 31.05438 28.06938	975 757 07 872 167 38 607 646 6002	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.598527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00	ECS IE 6/2010 25/0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECS IE	CS IE 5/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 105283 0.199 2093948 0.694 579466 0.666 580892 10.1 330288 34.99 208916 16.41	ECS IE	CS IE 5/2010 25/06 00 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS %2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS IS 1506/2010 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25/	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.702 0 0.596 0 0.702 0 0.862 63001 0.845 2018 0.747 15023 16.33 15446 36.33	ECS 6/2010 29 1000 0 0 0 0 0 0 0 6/491863 2336317 1.4 8805336 1.7 2123925 0.6 2472855 0.9 3352767 1.4 26069393 1. 5056295 1.3 260463 0.8 4472895 5.8 6606571 2.9 2945314 14	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 954328562 459895478 33616678 3351965462 880481709 0 842004509 8	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906	IECS 25/06/20 100 0 0 0 1.4230972 2.208328 3.406172: 3.753526 3.587217 3.469327 3.846153: 3.709317: 31.05438: 28.0693 2.496074	975 757 07 372 167 38 607 346 502 967 911	
25/06/2010 25/01 100 1 0 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532	ECS IE 6/2010 25/0	CCS IE 6/2010 25/00 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE %/2010 25/0 00 0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 105283 0.199 090862 0.232 119704 0.288 939348 0.694 6580892 10.1 330288 34.98 208916 16.44 449492 5.228	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2571587 5824866 2772954 1195086 41624053 41370774 627566 6.81 5518122 30.0 1751443 17,2: 5321582 5.63	CS IE S/2010 25/06 00 11 0	CS	IECS IN 1000 25/0 25/0 25/0 25/0 25/0 25/0 25/0 2	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.8072 0 0.802 33001 0.845 2018 0.747 15023 16.33 15446 36.31 13.64 550249 4.255	ECS 6/2010 25 1000 0 0 0 0 0 0 0 12336317 1.4 8805336 1.7 12472855 0.9 1352767 1.4 1609393 1.5 160656295 1.5 1260463 0.6 1417595 5.6 1660571 22 1945314 1.6 1372081 6.6	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 954328562 459895478 .36616678 351965462 880481709 0 842004509 8 99272272 17 4.2074676 8 9912343288 12	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.08112366	IECS 25/06/20 100 0 0 0 1.423097* 4.894530* 2.208328 3.406172* 3.466526* 3.587217 3.469327* 3.105438 28.0693* 2.496074 1.407511*	975 757 07 372 1667 338 907 846 906 91 118	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589	ECS IE 6/2010 25/0	CCS IE 6/2010 25/00 00 1 00 0 0 0 0 0 0 0.612 0 0.0778 0 0.777 0 0.848 0 0.706 0 0.515 44998 17.02 55844 37.64 75788 2.759 66175 5.246	CS IE %/2010 25/0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.196 990862 0.23 119704 0.286 993348 0.694 579466 0.666 580892 10.1 300288 34.9 208916 16.4 4449492 5.226	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 5571587 5824866 2772954 3195086 4624053 1370774 627566 6.81 5518122 30.0. 1751443 17.2: 3321582 5.63 6303114 7.90	CS IE 5/2010 25/06 0 11 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0	CS	IECS IS 15/06/2010 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25/	ECS IE 6/2010 25/0 1000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702 0 0.817 0 1.106 0 0.862 33001 0.845 2018 0.744 45023 16.33 55446 36.31 85486 36.34 855388 13.62 50249 4.255	ECS 6/2010 25 6/2010 25 100 0 0 0 0 0 6/491863 3336317 1.4 8805336 1.7 123925 0.6 1472855 0.9 3352767 1.4 2609393 1. 3056295 1.5 260463 1.5 3417595 5.8 660671 22 2945314 14 3372081 6.4 3475803 7.2	IECS 5/06/2010 25 100 0 0 0 0 0 408770734 706998409 693024313 9954328562 459895478 3351965462 880481709 0 842004509 8 99272272 17 4.2074676 8 912343288 17 256428773 11	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.08112366 3.981605888	IECS 25/06/20 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 907 9372 9667 938 907 946 902 967 91 11 18	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589 6.08515696 10.22	ECS IE 6/2010 25/0	ECS IE 6/2010 25/06 00 1 00 0 0 0 0 0 0 0.612 0 0.776 0 0.848 0 0.706 0 0.8515 44998 17.02 55844 37.64 07328 10.83 07328 10.83 06175 5.246 20498 4.217	CS IE 5/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.196 1090862 0.233 119704 0.288 193948 0.694 579466 0.661 5880892 10.1 030288 34.96 208916 16.44 449492 5.225 493848 4.670	ECS IE	CS IE 5/2010 25/06 00 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1734 0 0 0.1666 0 0 0.3466 0 0 0.3816 818321 8,9404 46884 58,916 31581 9,8118 33155 0.2897 33294 3,83545	CS %2010 25 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS IS 1506/2010 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25/	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.772 0 0.792 0 0.817 0 0.817 0 0.817 1.106 0 0.862 33001 0.845 2018 0.747 45023 16.33 35446 36.31 85388 13.62 85388 13.62 4.185 33465 3.348	ECS 6/2010 29 1000 0 0 0 0 0 0 0 6491863 5336317 1.4 6805336 1.7 6805336 1.7 6806339 1.3 6056295 1.3 6060571 22 9945314 14 6372081 6.5 6025376 6.5	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.08112366 3.08112368 3.981605888 3.872266318	IECS 25/06/20 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 97 372 167 38 500 846 500 967 91 18 828 8337 5001	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.598527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589 6.08615696 10.22 8.609228366 13.10	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0 0	CCS IE 6/2010 25/06 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE %2010 25/0 00 0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 105283 0.199 090862 0.232 119704 0.288 933948 0.666 880892 10.1 0300288 34.98 208916 16.47 449492 5.225 933404 6.193	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 772954 1370774 627566 6.81 5518122 30.0 1751443 17.2: 5321582 5.63 5606598 8.12	CS IE S/2010 25/06 00 11 0 0 0 0 0 0 0 0 0 0 0 0	CS	IECS IN 1000 25/0 25/0 25/0 25/0 25/0 25/0 25/0 2	ECS IE	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.818 0 0.772 0 0.599 0 0.702 0 0.817 0 1.108 0 0.846 2018 0.747 45023 16.33 35446 36.31 85388 13.62 50249 4.258 78942 4.188 40666 4.913	ECS 6/2010 25 6/2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674103 6.086323957 5.501523364 7.987474948 2.637641906 3.08112366 3.981605888 4.77080181	IECS 25/06/20 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 007 372 167 38 8607 3446 502 267 91 118 8228 337 5001 723	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0 0 0	ECS IE 6/2010 25/0	CCS IE 6/2010 25/00 00 1 0 0 0 0 0 0 0 0 0.612 0 0.777 0 0.848 0 0.776 0 0.806 0 0.515 44998 17.02 55844 37.64 0707328 10.83 070788 2.759 56175 5.246 2045 6.121 60455 6.126	CS IE %/2010 25/0 00 0 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.162 457745 0.192 407938 0.194 0993948 0.694 6580892 10.1 300288 34.99 208916 16.44 449492 5.22 933404 6.193 493848 4.677 990019 6.293	ECS IE 6/2010 25/06 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2772954 1195086 4624053 1370774 627566 6.81 5518122 30.0 17751443 17.2 5321582 5.63 6303114 7.90 6869953 6.67 68666598 8.12 4314098 9.33	CS IE S/2010 25/06 00 11 0 0	CS	IECS IN 1000 25/0 25/0 25/0 25/0 25/0 25/0 25/0 2	ECS IE	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702 0 0.817 0 1.108 0 0.846 53001 0.845 2018 0.747 15023 16.33 15446 36.31 85388 13.62 50249 4.255 78942 4.188 33465 3.3446 4.913 93699 5.052	ECS 6/2010 25 1000 0 0 0 0 0 0 0 123925 0.6 1472855 0.6 1472855 0.6 1472855 0.6 147595 5.6 14609393 1.6 147595 5.6 14606071 22 147595 5.6 147590 6.6 147590 6.6 147590 6.6 147590 7.2 147590 7.2 147590 7.2 147590 9.2 147590 9.	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.08112366 3.981605888 3.872266318 4.77080181 5.244029706	IECS 25/06/20 100 0 0 0 0 1.4230974 4.894530 2.208328 3.406173 3.456326 3.587217 3.4693274 3.1054384 28.0693 2.496074 1.148645 1.1814091 1.148645 1.1814091 1.148645 1.561177 1.341386	975 757 977 973 973 973 974 974 975 975 975 975 975 975 975 975 975 975	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589 6.08515696 10.23 8.609228366 13.10 9.215799715 13.04 5.785152598 7.998	ECS IE 6/2010 25/0	CCS IE 6/2010 25/00 00 1 00 0 0 0 0 0 0 0.612 0 0.0778 0 0.848 0 0.776 0 0.848 0 0.755 44998 17.02 55844 37.64 07328 10.83 17.02 55844 37.64 070788 2.759 56175 5.246 20498 4.217 14235 6.1216 50455 6.706 33881 4.152	CS IE %/2010 25/0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.196 990862 0.23 119704 0.286 993948 0.694 579466 0.664 589092 10.1 330288 34.96 208916 16.44 449492 5.225 93404 6.193 93848 4.67 9393404 6.193 93848 4.67 9394091 7.334 295229 5.114	ECS IE	CS IE 5/2010 25/06 00 11 0 0	CS %2010 25 %2010 25 %0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS IN 100 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25	ECS IE 6/2010 25/0 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702 0 0.817 0 1.106 0 0.862 53001 0.845 2018 0.7447 55023 16.33 35446 36.31 85486 36.34 85486 36.34 85486 36.34 85486 36.34 8550249 4.255 78942 4.188 33465 3.344 40666 4.913 33669 5.055 36863 3.031	ECS 6/2010 25 6/2010 25 100 0 0 0 0 0 6/491863 6336317 1.4 6805336 1.7 6472855 0.6 6472855 0.6 6472855 0.6 647285 0.6 6609393 1. 6609393 1. 67260463 6. 67260463 1. 67260463 1. 6726	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674103 5.674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.981605888 3.872266318 4.77080181 5.244029706 3.603482264	IECS 25/06/20 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 97 972 167 38 907 946 902 91 18 928 933 7501 723 927 961	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589 6.08515696 10.22 8.609228366 13.10 9.215799715 13.04 5.785152598 7.988 1.352011512 1.941	ECS IE 6/2010 25/0	ECS IE 6/2010 25/06 00 1 0 0 0 0 0 0 0 0 0.612 0 0.776 0 0.848 0 0.706 0 0.8515 44998 17.02 55844 37.64 07328 10.83 070788 2.759 66175 5.246 20498 4.217 44235 6.706 6.33881 4.152 59846 0.952	CS IE %/2010 25/0 0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.196 105283 0.196 1090862 0.23 119704 0.286 1993948 0.694 579466 0.661 5880892 10.1 030288 34.96 208916 16.44 449492 5.226 493848 4.670 199019 6.294 1932491 7.334 1987422 1.395	ECS IE	CS IE 8/2010 25/06 00 11 00 16 00 17	CS %/2010 25 %/2010 25 %/2010 25 %/2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS IN 100 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25	ECS IE	CS IE 5/2010 25/0 00 0 0 0 0 0 1.815 0 0.772 0 0.792 0 0.702 0 0.817 0 1.106 0 0.862 33001 0.845 2018 0.747 45023 16.33 35446 36.31 85388 13.62 550249 4.255 550249 4.255 550249 4.255 560249 5.052 33666 3.346 49660 5.0661	ECS 6/2010 25 1000 0 0 0 0 0 0 0 6491863 3336317 1.4 8805336 1.7 123925 0.6 47472855 0.5 1352767 1.4 16069393 1. 16056295 1.5 1260463 0.8 1475805 1.5 1660571 22 1945314 1. 16372081 6.5 16459033 8. 17526376 6.5 17526376 6.5	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.981605888 3.872266318 4.77080181 5.244029706 3.603482264 0.905889127	IECS 25/06/20 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 97 972 167 38 907 946 902 91 18 928 933 7501 723 927 961	
25/06/2010 25/00 100 1 0 0 0 0 0 0 0 0 0 0 0.504615866 0.281646065 0.063 0.312940072 0.097 0.508527617 0.179 0.571115631 0.335 0.786261931 0.776 0.837114693 0.815 13.5890554 6.147 30.62981798 22.09 10.14990285 10.00 4.431058752 4.532 6.350593991 8.589 6.08515696 10.22 8.609228366 13.10 9.215799715 13.04 5.785152598 7.988 1.352011512 1.941	ECS IE 6/2010 25/0 100 0 0 0 0 0 0 0 0	ECS IE 6/2010 25/06 00 1 0 0 0 0 0 0 0 0 0.612 0 0.776 0 0.848 0 0.706 0 0.8515 44998 17.02 55844 37.64 07328 10.83 070788 2.759 66175 5.246 20498 4.217 44235 6.706 6.33881 4.152 59846 0.952	CS IE %/2010 25/0 0 0 0 0 0 0 0 0 0 0 717627 457745 0.166 105283 0.196 990862 0.23 119704 0.286 993948 0.694 579466 0.664 589092 10.1 330288 34.96 208916 16.44 449492 5.225 93404 6.193 93848 4.67 9393404 6.193 93848 4.67 9394091 7.334 295229 5.114	ECS IE	CS IE 8/2010 25/06 00 11 00 16 00 17	CS %2010 25 %2010 25 %0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS IN 100 25/0 25/0 25/0 25/0 25/0 25/0 25/0 25	ECS IE	CS IE 5/2010 25/0 00 0 0 0 0 0 0 0 1.815 0 0.772 0 0.596 0 0.702 0 0.817 0 1.106 0 0.862 53001 0.845 2018 0.7447 55023 16.33 35446 36.31 85486 36.34 85486 36.34 85486 36.34 85486 36.34 8550249 4.255 78942 4.188 33465 3.344 40666 4.913 33669 5.055 36863 3.031	ECS 6/2010 25 1000 0 0 0 0 0 0 0 6491863 3336317 1.4 8805336 1.7 123925 0.6 47472855 0.5 1352767 1.4 16069393 1. 16056295 1.5 1260463 0.8 1475805 1.5 1660571 22 1945314 1. 16372081 6.5 16459033 8. 17526376 6.5 17526376 6.5	IECS 5/06/2010 25	IECS 5/06/2010 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IECS 25/06/2010 100 0 0 0 32.371484 0 1.745877789 0 3.467507274 4.413191077 4.655674103 5.674102813 6.086323957 5.501523364 7.987474948 2.637641906 3.981605888 3.872266318 4.77080181 5.244029706 3.603482264	IECS 25/06/20 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	975 757 97 972 167 38 907 946 902 91 18 928 933 7501 723 927 961	

ANNEX 4. ALCONTROL CONTAMINANT REPORTS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

> Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull
Department of Geography
University of Hull
Cottingham Road
Hull
South Yorkshire
HU6 7RX

Attention: Krysia Mazik

CERTIFICATE OF ANALYSIS

 Date:
 26 May 2010

 Customer:
 H_UNIHULL_HUL-2

Sample Delivery Group (SDG): 100518-51 Report No.: 85015

Your Reference:

Location: Humber Terminal

We received 6 samples on Tuesday May 18, 2010 and 6 of these samples were scheduled for analysis which was completed on Wednesday May 26, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Iain Swinton

Operations Director - Land UK & Ireland

ALcontrol Laboratories Analytical Services

SDG:100518-51Customer:University of HullJob:H_UNIHULL_HUL-2Attention:Krysia Mazik

Client Reference:

Order No.:

Location: Humber Terminal Report No: 85015

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Sampled Date
1560223	3L 1		
1560242	4M 1		
1560247	5L 1		
1560257	6U 1		
1560263	7L 1		
1560273	8M 1		

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol Laboratories Analytical Services

Order No.:

SDG:100518-51Customer:University of HullJob:H_UNIHULL_HUL-2Attention:Krysia Mazik

Client Reference:

Location: Humber Terminal Report No: 85015

SOLID

Results Legend	Lab Sample No(s)	1560223	1560242	1560247	1560257	1560263	1560273	
X Test			Г	Г	Γ	Γ	Г	
No Determination Possible	Customer Sample Ref.			5L	6U	7L	8M	
	Depth (m)							Total
	Container	250g Amber Jar						
Metals by iCap-OES (Soil)	Arsenic	X	X	X	X	X	X	0 6
	Cadmium		Г	Г	Г	Г	Г	0
		X	X	X	X	Х	Х	6
	Chromium	X	X	X	X	X	X	0 6
	Copper		Г	Г	Г	Г	Г	0
	Lead	X	X	X	X	X	X	6
	2000	X	X	X	X	X	X	6
	Mercury	V	v	X	v	V	V	0 6
	Nickel	^	^	^	ŕ	^	^	0
		X	X	X	X	X	X	6
	Zinc	X	X	X	X	X	X	0 6
PAH by GCMS	All							0
DOD- by COMO	All	X	X	Х	X	X	X	6
PCBs by GCMS	All	X	X	X	X	X	X	0 6
Sample description	All							0
TPH	All	X	X	Х	X	X	X	6 0
IFII	All	X	X	X	X	X	X	6

ALcontrol Laboratories Analytical Services

Customer:

Attention:

SDG: 100518-51

Job: H_UNIHULL_HUL-2

Humber Terminal

Client Reference:

Location:

Order No.:

Report No:

85015

University of Hull

Krysia Mazik

Sample Descriptions

Grain Sizes:

<0.063mm very fine, 0.063mm - 0.1mm fine, 0.1mm - 2mm medium, 2mm - 10mm coarse, >10mm very coarse

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions
1560223	3L		Light Brown	Clay	<0.063 mm	None
1560242	4M		Light Brown	Clay	<0.063 mm	None
1560247	5L		Light Brown	Clay	<0.063 mm	None
1560257	6U		Dark Brown	Clay	<0.063 mm	None
1560263	7L		Light Brown	Clay	<0.063 mm	None
1560273	8M		Light Brown	Clay	<0.063 mm	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALcontrol Laboratories Analytical Services

SDG:100518-51Customer:University of HullJob:H_UNIHULL_HUL-2Attention:Krysia Mazik

Client Reference:

Order No.:

Location: Humber Terminal Report No: 85015

Test Completion dates

SDG reference: 100518-51

Lab Sample No(s)	1560223	1560242	1560247	1560257	1560263	1560273
Customer Sample Ref.	3L	4M	5L	6U	7L	8M
Depth						
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Metals by iCap-OES (Soil)	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010
PAH by GCMS	20/05/2010	20/05/2010	20/05/2010	20/05/2010	20/05/2010	26/05/2010
PCBs by GCMS	25/05/2010	25/05/2010	25/05/2010	25/05/2010	25/05/2010	25/05/2010
Sample description	19/05/2010	19/05/2010	19/05/2010	19/05/2010	19/05/2010	19/05/2010
ТРН	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010	21/05/2010

ALcontrol Laboratories Analytical Services

SDG: 100518-51

Job: H_UNIHULL_HUL-2

Client Reference:

Location: Humber Terminal

Customer: University of Hull Attention: Krysia Mazik

Order No.: Report No:

No: 85015

	Results Legend	Customer	Sample Ref.	3L	4M		5L		6U	7L		8M	
M aq	ISO17025 accredited. mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample.		Depth (m) ample Type	Soil/Solid	Soil/Solid		0.710.111		0.71/0.41.4	0.310.43		Soil/Solid	
tot.unfilt	Total / unfiltered sample. subcontracted test.	Da	ate Sampled		3011/30110		Soil/Solid		Soil/Solid	Soil/Solid		3011/3011Q	
**	% recovery of the surrogate standard to check the efficiency	Da	te Received SDG Ref		18/05/2010 100518-51		18/05/2010 100518-51		18/05/2010 100518-51	18/05/2010 100518-51		18/05/2010 100518-51	
	of the method. The results of the individual compounds within	Lab Sa	mple No.(s)		1560242		1560247		1560257	1560263		1560273	
	the samples are not corrected for this recovery.												
Compo	nent ils and Greases	LOD/Units <10 mg/kg	Method TM087	121	24.8		73	_	69.1	86		<10	
PCB co	ongener 28	<3 µg/kg	TM168	<3 M	<3	М	<3 	М	<3 M	<3	М	<3	м
PCB co	ongener 52	<3 µg/kg	TM168	<3 M	<3	М	<3	м	<3 M	<3	м	<3	м
PCB co	ongener 101	<3 µg/kg	TM168	<3	<3		<3		<3	<3	M	<3	
PCB co	ongener 118	<3 μg/kg	TM168	<3	<3	M	<3	M	M <3	<3	M	<3	M
PCB co	ongener 138	<3 µg/kg	TM168	<3	<3	M	<3	М	<3	<3	М	<3	М
PCB co	ongener 153	<3 μg/kg	TM168	M <3	<3	M	<3	М	<3	<3	М	<3	М
PCB co	ongener 180	<3 μg/kg	TM168	<3	<3	M	<3	М	<3	<3	М	<3	М
PCBs,	Total ICES 7	<3 μg/kg	TM168	M <3	<3	M	<3	М	M	<3	М	<3	М
Arsenio		<0.6 mg/kg	TM181	15.5	13.8		15.9		18.9	17.9		14.6	
Cadmiu		<0.02	TM181	0.533	0.296	M		М	0.325		М	0.312	М
Chromi		mg/kg <0.9 mg/kg	TM181	45.7	32.7	M		М	43		М	31.6	М
Copper		<1.4 mg/kg	TM181	31.4	23.5	M		М	27.4		М	24.5	М
				М		M	I	М	М		М		М
Lead		<0.7 mg/kg	TM181	47.5 M	35.4	М		м	54.6 M		М	38.6	М
Mercur	у	<0.14 mg/kg	TM181	<0.14 M	<0.14	М	<0.14	м	<0.14 M		М	<0.14	М
Nickel		<0.2 mg/kg	TM181	32.4 M	23.5	М	23.9	м	29.3 M	27	М	22.1	м
Zinc		<1.9 mg/kg	TM181	128 M	108	М	121	м	145 M	139	м	112	м
													-
													=
													\dashv
													\dashv
													\dashv
													\dashv
								+					\dashv
													\Box
										+			

ALcontrol Laboratories Analytical Services

100518-51 SDG: Job:

H_UNIHULL_HUL-2

Client Reference:

Location: **Humber Terminal**

University of Hull Krysia Mazik Customer: Attention:

Order No.: Report No:

85015

РАН	by GCMS								
#	Results Legend ISO17025 accredited.	Customer	Sample Ref.	3L	4M	5L	6U	7L	8M
М	mCERTS accredited. Aqueous / settled sample.		Depth (m)						
diss.filt	Dissolved / filtered sample. Total / unfiltered sample.		ample Type ate Sampled	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
*	subcontracted test. % recovery of the surrogate		te Received	18/05/2010	18/05/2010	18/05/2010	18/05/2010	18/05/2010	18/05/2010
	standard to check the efficiency of the method. The results of the		SDG Ref	100518-51	100518-51	100518-51	100518-51	100518-51	100518-51
	individual compounds within the samples are not corrected	Lab Sa	imple No.(s)	1560223	1560242	1560247	1560257	1560263	1560273
C	for this recovery.	LOD/Units	Method						
Compo Naphth	ialene-d8 %	%	TM218	90.1	91.9	88.3	101	92.5	97.1
recove	ry** ohthene-d10 %	%	TM218	90.2	92.5	88.4	103	93.4	98.3
recove	ry**								
Phenai recove	nthrene-d10 % rv**	%	TM218	90.1	92.4	87.4	102	93.1	98.4
	ne-d12 % recovery**	%	TM218	86.7	89	83.8	99.2	89.3	95.3
Peryler	ne-d12 % recovery**	%	TM218	83.7	87.2	82.1	98.1	88.6	94.8
Naphth	alene	<9 µg/kg	TM218	182 M	168 M	150 M	189 M	202 M	237 M
Acena	ohthylene	<12 µg/kg	TM218	21.6 M	26.4 M	19.9 M	22.4 M	27.8 M	28.3 M
Acena	ohthene	<8 µg/kg	TM218	37.5	45.6	29.8	38.1	45	50.9
Fluorer	ne	<10 µg/kg	TM218	M 55.7	58.8	46.7	M 59.5	65.9	72.4
Phenai	nthrene	<15 µg/kg	TM218	M 293	M 329	M 251	M 309	M 343	M 406
Anthra	cene	<16 µg/kg	TM218	78	86.6	62	82.6	104	111
Fluorar	nthene	<17 µg/kg	TM218	355	402 M	304 M	384	438	507
Pyrene		<15 µg/kg	TM218	343 M	372 M	291 M	375 M	410 M	464 M
Benz(a)anthracene	<14 µg/kg	TM218	194 M	217 M	169 M	225 M	257 M	282 M
Chryse	ne	<10 µg/kg	TM218	172 M	193 M	152 M	187 M	215 M	243 M
Benzo(b)fluoranthene	<15 µg/kg	TM218	300 M	319 M	251 M	325 M	363 M	377 M
Benzo(k)fluoranthene	<14 µg/kg	TM218	113 M	101 M	95.5 M	119 M	129 M	139 M
Benzo(a)pyrene	<15 µg/kg	TM218	193 M	201 M	167 M	217 M	258 M	256 M
Indeno	(1,2,3-cd)pyrene	<18 µg/kg	TM218	129 M	125 M	109 M	141 M	154 M	146 M
	o(a,h)anthracene	<23 µg/kg	TM218	<23 M	41.6 M	<23 M	42.4 M	46 M	48.6 M
	g,h,i)perylene	<24 µg/kg	TM218	199 M	191 M	166 M	220 M	229 M	220 M
	omatic hydrocarbons, ISEPA 16	<118 µg/kg	TM218	2670 M	2880 M	2260 M	2940 M	3290 M	3590 M

ALcontrol Laboratories Analytical Services

Table of Results - Appendix

Client: University of Hull 100518-51 SDG Number: Client Ref: **REPORT KEY** Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 No Determination Possible NDP ISO 17025 Accredited MCERTS Accredited М Result previously reported (Incremental reports only) Possible Fibres Detected Equivalent Carbon No Fibres Detected PFD (Aromatics C8-C35) Note: Method detection limits are not always achievable due to various circumstances beyond our control

Method No	Reference	Description	Wet/Dry Sample ¹
PM001		Preparation of Samples for Metals Analysis	Dry
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material	Wet
TM087	Modified: US EPA Method 8440	Measurement of Total Petroleum Hydrocarbons in soil or water samples by infra-red spectrophotometry	Wet
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils	Dry
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES	Dry
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546	Wet

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following:
 NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and
 TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- 13. **Surrogate recoveries** Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKE	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM	LIQUID/LIQUID SHAKE	GC MS
TRIAZINE HERBS	DCM	LIQUID/LIQUID SHAKE	GC MS
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GC FID

SOLID MATRICES EXTRACTION SUMMARY

	COLID	WATRICES EXTRACTION SUMMART		
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

> Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull
Department of Geography
University of Hull
Cottingham Road
Hull
South Yorkshire
HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

 Date:
 03 June 2010

 Customer:
 H_UNIHULL_HUL-3

Sample Delivery Group (SDG): 100526-21 Report No.: 85842

Your Reference:

Location: HUMBER TERMINAL

We received 6 samples on Wednesday May 26, 2010 and 6 of these samples were scheduled for analysis which was completed on Thursday June 03, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Iain Swinton

Operations Director - Land UK & Ireland

SDG:

Job:

Location:

ALcontrol Laboratories Analytical Services

100526-21

H_UNIHULL_HUL-3

Client Reference:

HUMBER TERMINAL

Customer: Attention:

University of Hull Ann Leighton

Order No.: FJ021299

Report No: 85842

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Sampled Date
1598241	10 SUB 1		04/05/2010
1598224	11 SUB 1		04/05/2010
1597971	12 SUB 1		04/05/2010
1597960	17 SUB 1		04/05/2010
1597940	18 SUB 1		04/05/2010
1597919	19 SUB 1		04/05/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol Laboratories Analytical Services

 SDG:
 100526-21
 Customer:
 University of Hull

 Job:
 H_UNIHULL_HUL-3
 Attention:
 Ann Leighton

 Client Reference:
 Order No.:
 FJ021299

Location: HUMBER TERMINAL Report No: 85842

SOLID

Results Legend	Lab Sample No(s)	1597919	1597940	1597960	1597971	1598224	1598241	
X Test		T					Г	
No Determination Possible	Customer Sample Ref.	19 SUB	18 SUB	17 SUB	12 SUB	11 SUB	10 SUB	
	Depth (m)							Total
	Container	250g Amber Jar						
Metals by iCap-OES (Soil)	Arsenic	×	×	X	×	×	X	0 6
	Cadmium	Г	Г	X	Г	Г	Г	0
	Chromium							0
	Copper	X	Х	X	Х	Х	Х	6 0
		X	X	X	X	X	X	6
	Lead	X	X	X	X	X	X	0 6
	Mercury							0
	Nickel	X	X	Х	X	X	X	6 0
		X	X	Χ	Χ	X	X	6
	Zinc	X	X	X	X	X	X	0 6
PAH by GCMS	All	Г		X	Г			0
PCBs by GCMS	All				Г			0
Sample description	All	^	^	X	^	^	^	6 0
TPH	All	X	X	X	Х	X	X	6
IFII	All	X	X	X	X	X	X	0 6

Location:

ALcontrol Laboratories Analytical Services

SDG: 100526-21

Job: H_UNIHULL_HUL-3

Client Reference:

HUMBER TERMINAL

Customer: Attention:

University of Hull Ann Leighton

Order No.: FJ021299

Report No: 85842

Sample Descriptions

Grain Sizes:

<0.063mm very fine, 0.063mm - 0.1mm fine, 0.1mm - 2mm medium, 2mm - 10mm coarse, >10mm very coarse

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions
1597919	19 SUB		Light Brown	Sand	0.1 - 2 mm	Stones
1597940	18 SUB		Light Brown	Sandy Silt Loam	0.1 - 2 mm	N/A
1597960	17 SUB		Light Brown	Sandy Silt Loam	0.1 - 2 mm	N/A
1597971	12 SUB		Dark Brown	Sandy Silt Loam	0.1 - 2 mm	N/A
1598224	11 SUB		Light Brown	Silt Loam	0.063 - 0.1 mm	N/A
1598241	10 SUB		Light Brown	Sandy Silt Loam	0.1 - 2 mm	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALcontrol Laboratories Analytical Services

Customer:

Attention:

University of Hull

Ann Leighton

FJ021299

SDG: 100526-21 Job:

H_UNIHULL_HUL-3

Client Reference:

Order No.:

85842 Location: **HUMBER TERMINAL Report No:**

Test Completion dates

SDG reference: 100526-21

Lab Sample No(s)	1597919	1597940	1597960	1597971	1598224	1598241
Customer Sample Ref.	19 SUB	18 SUB	17 SUB	12 SUB	11 SUB	10 SUB
Depth						
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Metals by iCap-OES (Soil)	02/06/2010	02/06/2010	02/06/2010	01/06/2010	02/06/2010	02/06/2010
PAH by GCMS	27/05/2010	27/05/2010	27/05/2010	27/05/2010	27/05/2010	27/05/2010
PCBs by GCMS	01/06/2010	01/06/2010	01/06/2010	01/06/2010	01/06/2010	01/06/2010
Sample description	26/05/2010	26/05/2010	26/05/2010	26/05/2010	26/05/2010	26/05/2010
ТРН	27/05/2010	27/05/2010	27/05/2010	27/05/2010	27/05/2010	27/05/2010

ALcontrol Laboratories Analytical Services

SDG: 100526-21

Job: H_UNIHULL_HUL-3

Client Reference:

Location: HUMBER TERMINAL

Customer: University of Hull
Attention: Ann Leighton
Order No.: FJ021299
Report No: 85842

PCB congener 52			· · · · · · · · · · · · · · · · · · ·			JOIL 110. GGG			
10 10 10 10 10 10 10 10									
Name		Customer	Sample Ref.	10 SUB	11 SUB	12 SUB	17 SUB	18 SUB	19 SUB
March Desperate Sample Type Depth (m) Sample Type Depth (m) Sample Type Depth (m) Sample Depth (m)									
Sample Type Soli/Solid Solid	aq Aqueous / settled sample.								
Date Received Subscription Su	diss.filt Dissolved / filtered sample.			Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
Transcent of the surrigate standards to chee the refilement of the that the refilement and technical threat the refilement and technical threat the refilement and technical compounds within the samples are not correction in the samples are not correction. In the samples are not correction in the samples are not correction in the samples are not correction. In the samples are not correction in the samples are not correction. In the samples are not corrections are not correction. In the samples are not correction in the samples are not correction. In the samples are not correction in the samples are not correction. In the samples are not correction. In the samples are not correction in the samples are not correction. In the samples are not correction in the samples are not correction. In the samples are not correction. In the samples are not correction. In the samples are not corrected as a sample are not correction. In the samples are not corrected as a sample are not corrected as a sample are not corrected a		Di	ate Sampled	04/05/2010	04/05/2010	04/05/2010	04/05/2010	04/05/2010	04/05/2010
Component Lab Sample No.(s) 1598241 1598224 1597971 1597960 1597940 1597919 15	** % recovery of the surrogate		te Received	26/05/2010	26/05/2010	26/05/2010	26/05/2010	26/05/2010	26/05/2010
	standard to check the effici	ency	SDG Ref	100526-21					
Description			ample No.(s)						
Component Comp									
TPH/Oils and Greases									
PCB congener 28									
PCB congener 52	TPH/Oils and Greases	<10 mg/kg	TM087	78.8	136	145	40.2	67.8	56.9
PCB congener 52	PCB congener 28	<3 μg/kg	TM168						<3 M
PCB congener 101 C3 μg/kg TM168 C3	PCB congener 52	<3 μg/kg	TM168	<3	<3	<3	<3	<3	<3
PCB congener 118	PCB congener 101	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 138	PCB congener 118	<3 μg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 153	PCB congener 138	<3 μg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 180 Sample Marcury Foliage Foliage	PCB congener 153	<3 μg/kg	TM168	<3	<3	<3	<3	<3	
PCBs, Total ICES 7 <3 μg/kg TM168 <3 <3 <3 <3 <3 <3 <3 <	PCB congener 180	<3 μg/kg	TM168					<3	
Cadmium	PCBs, Total ICES 7	<3 μg/kg	TM168						M <3
Cadmium		<0.6 mg/kg	TM181	15.3	14.3	29.1	21.4	21	29.6
Marcury Marc	Cadmium			М	M	М	M	М	М
Copper		mg/kg		М	M	M	M	М	M
Lead <0.7 mg/kg	Copper		TM181						7
Mercury <0.14 mg/kg TM181 mg/kg <0.14 mg/kg M				М	M	М	M	М	М
Nickel <0.2 mg/kg TM181 17.1 19 18.6 17.2 15 10.2 Zinc <1.9 mg/kg TM181 90.2 110 115 102 91.2 66.7	Mercury		TM181						M <0.14
Zinc <1.9 mg/kg TM181 90.2 110 115 102 91.2 66.7	Nickel		TM181						10.2
			T1404						M
	ZINC	<1.9 mg/kg	1M181						66.7 M

ALcontrol Laboratories Analytical Services

100526-21 SDG: Job:

H_UNIHULL_HUL-3

Client Reference: Location:

HUMBER TERMINAL

University of Hull Ann Leighton Customer: Attention: FJ021299 Order No.: Report No: 85842

PAH by GCMS								
Results Legend # ISO17025 accredited.	Customer	Sample Ref.	10 SUB	11 SUB	12 SUB	17 SUB	18 SUB	19 SUB
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
tunfilt Total / unfiltered sample. * subcontracted test. * % recovery of the surrogate standard to check the efficiency	Da	ate Sampled ate Received SDG Ref	04/05/2010 26/05/2010 100526-21	04/05/2010 26/05/2010 100526-21	04/05/2010 26/05/2010 100526-21	04/05/2010 26/05/2010 100526-21	04/05/2010 26/05/2010 100526-21	04/05/2010 26/05/2010 100526-21
of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Lab Sa	ample No.(s)	1598241	1598224	1597971	1597960	1597940	1597919
Component	LOD/Units	Method						
Naphthalene-d8 % recovery**	%	TM218	111	110	108	109	109	109
Acenaphthene-d10 %	%	TM218	111	111	109	107	110	110
recovery** Phenanthrene-d10 %	%	TM218	109	110	109	102	110	110
recovery** Chrysene-d12 % recovery**	%	TM218	105	107	106	97.2	108	108
Perylene-d12 % recovery**	%	TM218	111	114	113	104	117	116
Naphthalene	<9 µg/kg	TM218	106 M	143 M	177 M	106 M	68.3 M	52.6
Acenaphthylene	<12 μg/kg	TM218	23.8 M	22 M	27.5 M	14.6 M	12.2 M	<12
Acenaphthene	<8 µg/kg	TM218	30.7 M	27.9 M	41.4 M	22.6 M	22.9 M	18.5
Fluorene	<10 µg/kg	TM218	42.4 M	49 M	72.4 M	33.4 M	39.1 M	25.4
Phenanthrene	<15 μg/kg	TM218	250 M	242 M	264 M	168 M	161 M	127
Anthracene	<16 µg/kg	TM218	68.6 M	66.7 M	95.2 M	49.3 M	38.5 M	39.6
Fluoranthene	<17 μg/kg	TM218	361 M	299 M	377 M	196 M	165 M	182
Pyrene	<15 µg/kg	TM218	329 M	291 M	347 M	187 M	162 M	171
Benz(a)anthracene	<14 μg/kg	TM218	268 M	201 M	236 M	115 M	118 M	90
Chrysene	<10 µg/kg	TM218	189 M	155 M	151 M	86.6 M	83.1 M	79.4
Benzo(b)fluoranthene	<15 μg/kg	TM218	296 M	262 M	292 M	164 M	148 M	136
Benzo(k)fluoranthene	<14 µg/kg	TM218	119 M	106 M	114 M	61.3 M	59.9 M	52
Benzo(a)pyrene	<15 µg/kg	TM218	278 M	222 M	265 M	144 M	120 M	118
Indeno(1,2,3-cd)pyrene	<18 μg/kg	TM218	145 M	124 M	148 M	77.8 M	63.5 M	59.5
Dibenzo(a,h)anthracene	<23 μg/kg	TM218	43.3 M	38.7 M	42.1 M	<23 M	<23 M	<23
Benzo(g,h,i)perylene	<24 μg/kg	TM218	181 M	175 M	205 M	105 M	87 M	77.5
Polyaromatic hydrocarbons, Total USEPA 16	<118 µg/kg	TM218	2730 M	2430 M	2860 M	1530 M	1350 M	1230

ALcontrol Laboratories Analytical Services

Table of Results - Appendix

Client: University of Hull 100526-21 SDG Number: Client Ref: **REPORT KEY** Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 No Determination Possible NDP ISO 17025 Accredited MCERTS Accredited М Result previously reported (Incremental reports only) Possible Fibres Detected Equivalent Carbon No Fibres Detected PFD (Aromatics C8-C35) Note: Method detection limits are not always achievable due to various circumstances beyond our control

Method No	Reference	Description	Wet/Dry Sample ¹
PM001		Preparation of Samples for Metals Analysis	Dry
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material	Wet
TM087	Modified: US EPA Method 8440	Measurement of Total Petroleum Hydrocarbons in soil or water samples by infra-red spectrophotometry	Wet
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils	Dry
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES	Dry
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546	Wet

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following:
 NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and
 TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- 13. **Surrogate recoveries** Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKE	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM	LIQUID/LIQUID SHAKE	GC MS
TRIAZINE HERBS	DCM	LIQUID/LIQUID SHAKE	GC MS
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GC FID

SOLID MATRICES EXTRACTION SUMMARY

	COLID	WATRICES EXTRACTION SUMMART		
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

> Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull
Department of Geography
University of Hull
Cottingham Road
Hull
South Yorkshire
HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

 Date:
 03 August 2010

 Customer:
 H_UNIHULL_HUL-4

Sample Delivery Group (SDG): 100720-24 Report No.: 92334

Your Reference:

Location: YF HUMBER

We received 21 samples on Tuesday July 20, 2010 and 21 of these samples were scheduled for analysis which was completed on Tuesday August 03, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Iain Swinton

Operations Director - Land UK & Ireland

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location:

YF HUMBER

Customer: Attention:

University of Hull Ann Leighton

Order No.: FJ021830 **Report No.:** 92334

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Sampled Date
1843974	VC1	3.10	15/07/2010
1843969	VC11	2.20	14/07/2010
1844029	VC12	4.30	15/07/2010
1844051	VC13	3.80	15/07/2010
1843904	VC15	2.60	15/07/2010
1843910	VC16	3.40	14/07/2010
1843957	VC17	4.00	14/07/2010
1843924	VC18	5.20	14/07/2010
1844015	VC19	3.30 - 3.60	14/07/2010
1843983	VC2	6.00	15/07/2010
1843933	VC20	3.38	14/07/2010
1843913	VC22	3.60	14/07/2010
1844091	VC24	3.60	14/07/2010
1843989	VC27	4.90	15/07/2010
1844088	VC28	4.30	14/07/2010
1844129	VC29	2.90	14/07/2010
1844044	VC3		15/07/2010
1844121	VC30	3.00	15/07/2010
1844061	VC6	5.30	15/07/2010
1843995	VC7		14/07/2010
1843971	VC8	4.70	15/07/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol Laboratories Analytical Services

SDG:100720-24Customer:University of HullJob:H_UNIHULL_HUL-4Attention:Ann Leighton

Client Reference:Order No.:FJ021830Location:YF HUMBERReport No:92334

SOLID

Results Legend	Lab Sample No(s)	1843904	1843910	1843913	1843924	1843933	1843957	1843969	1843971	1843974	1843983	1843989	1843995	1844015	1844029	1844044	1844051	1844061	1844088	1844091	1844121	1844129	
X Test		Ť	r	T							1	1	1	1	†	1						П	
No Determination Possible	Customer Sample Ref.	VC15	VC16	VC22	VC18	VC20	VC17	VC11	VC8	VC1	VC2	VC27	VC7	VC19	VC12	VC3	VC13	VC6	VC28	VC24	VC30	VC29	
	Depth (m)	2.60	3.40	3.60	5.20	3.38	4.00	2.20	4.70	3.10	6.00	4.90		3.30 - 3.60	4.30		3.80	5.30	4.30	3.60	3.00	2.90	Total
	Container	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	
GRO BTEX MTBE GC (S)	All	V	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	Y			V	V	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	V .	V	V	\ <u>\</u>	V		· ·	Y	0
Metals by iCap-OES (Soil)	Arsenic	X		Г	Г	П	П		П		П	П	X	Т	Т	П	П		П			П	0
	Cadmium			Г							П	П	X	П	Т							X	0
	Chromium	X		Г									X									X	0
	Copper	X		X			X			X		T	X .	T	T				X		X		21 0 21
	Lead			Γ								I		I									0 21
	Mercury			Γ								T	X										0
	Nickel			Г			П						X	T	T				X	X			0
	Selenium			Г								T	X	T	T								21 0
	Zinc	X	X	X	X	X	X	X	X	X	X	X	X	X	X .	X	X	X	X	X	X	X	21 0
Organotins on soils*	All	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	21 0
PAH by GCMS	All	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	21 0
PCBs by GCMS	All	X	X	X	X	X	X	X	X	X	X	X	X	X	X :	X	X	X	X	X	X	X	21 0
		X	X	X	X	X	X	X	X	X	X	X	X	X	X :	X	X	X	X	X	X	X	21
Sample description	All	X	X	X	X	X	X	X	X	X	Х	Х	X	X	X	Х	Χ	X	X	X	X	X	0 21

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location:

YF HUMBER

Customer:

Customer: University of Hull Attention: Ann Leighton

Order No.: FJ021830 Report No: 92334

Sample Descriptions

Grain Sizes:

<0.063mm very fine, 0.063mm - 0.1mm fine, 0.1mm - 2mm medium, 2mm - 10mm coarse, >10mm very coarse

ab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions
1843904	VC15	2.60	Dark Brown	Sand	0.1 - 2 mm	Stones
1843910	VC16	3.40	Dark Brown	Clay	<0.063 mm	N/A
1843913	VC22	3.60	Dark Brown	Clay Loam	0.063 - 0.1 mm	N/A
1843924	VC18	5.20	Dark Brown	Clay	<0.063 mm	Stones
1843933	VC20	3.38	Dark Brown	Clay Loam	0.063 - 0.1 mm	N/A
1843957	VC17	4.00	Dark Brown	Clay Loam	0.063 - 0.1 mm	Stones
1843969	VC11	2.20	Dark Brown	Clay	<0.063 mm	Stones
1843971	VC8	4.70	Dark Brown	Sand	0.1 - 2 mm	N/A
1843974	VC1	3.10	Light Brown	Sand	0.1 - 2 mm	Stones
1843983	VC2	6.00	Grey	Sandy Clay	0.1 - 2 mm	Stones
1843989	VC27	4.90	Dark Brown	Clay Loam	0.063 - 0.1 mm	N/A
1843995	VC7		Dark Brown	Silt Loam	0.063 - 0.1 mm	None
1844015	VC19	3.30 - 3.60	Dark Brown	Sandy Clay Loam	0.1 - 2 mm	Stones
1844029	VC12	4.30	Dark Brown	Sand	0.1 - 2 mm	None
1844044	VC3		Dark Brown	Clay	<0.063 mm	N/A
1844051	VC13	3.80	Dark Brown	Sand	0.1 - 2 mm	N/A
1844061	VC6	5.30	Dark Brown	Sand	0.1 - 2 mm	N/A
1844088	VC28	4.30	Dark Brown	Clay	<0.063 mm	Stones
1844091	VC24	3.60	Dark Brown	Silty Clay Loam	0.063 - 0.1 mm	N/A
1844121	VC30	3.00	Dark Brown	Silty Clay	<0.063 mm	Stones
1844129	VC29	2.90	Dark Brown	Clay	<0.063 mm	Stones

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

YF HUMBER Location:

Customer: University of Hull Attention: Ann Leighton

Order No.: FJ021830 92334 **Report No:**

Test Completion dates

SDG reference: 100720-24

Lab Sample No(s)	1843904	1843910	1843913	1843924	1843933	1843957	1843969	1843971	1843974	1843983	1843989	1843995
,			1 11 1	VC18		VC17		VC8	1 11	VC2		VC7
Customer Sample Ref.	VC15	VC16	VC22	VC18	VC20	VC17	VC11	VC8	VC1	VG2	VC27	VC7
Depth	2.60	3.40	3.60	5.20	3.38	4.00	2.20	4.70	3.10	6.00	4.90	
Туре	SOLID											
GRO by GC-FID (S)	26/07/2010	26/07/2010	26/07/2010	26/07/2010	28/07/2010	28/07/2010	26/07/2010	28/07/2010	28/07/2010	28/07/2010	28/07/2010	26/07/2010
Metals by iCap-OES (Soil)	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010
Organotins on soils*	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010
PAH by GCMS	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010
PCBs by GCMS	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010
Sample description	23/07/2010	23/07/2010	22/07/2010	23/07/2010	22/07/2010	22/07/2010	23/07/2010	22/07/2010	22/07/2010	22/07/2010	22/07/2010	23/07/2010

1844015	1844029	1844044	1844051	1844061	1844088	1844091	1844121	1844129
VC19	VC12	VC3	VC13	VC6	VC28	VC24	VC30	VC29
3.30 - 3.60	4.30		3.80	5.30	4.30	3.60	3.00	2.90
SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
28/07/2010	26/07/2010	26/07/2010	28/07/2010	28/07/2010	28/07/2010	28/07/2010	28/07/2010	28/07/2010
26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010
03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010	03/08/2010
23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010	23/07/2010
26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010	26/07/2010
22/07/2010	23/07/2010	23/07/2010	22/07/2010	22/07/2010	22/07/2010	22/07/2010	22/07/2010	22/07/2010

ALcontrol Laboratories Analytical Services

100720-24 SDG: Job:

H_UNIHULL_HUL-4

Client Reference: Location:

YF HUMBER

University of Hull Ann Leighton Customer: Attention: FJ021830 Order No.: 92334 Report No:

	Results Legend	Customer	Sample Ref.	VC1	VC11		VC12		VC13		VC15		VC16	
# M aq diss.filt	ISO17025 accredited. mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample.		Depth (m)	3.10	2.20		4.30		3.80		2.60		3.40	
tot.unfilt	Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency	Da Da	ate Sampled te Received SDG Ref	Soil/Solid 15/07/2010 20/07/2010 100720-24	Soil/Solid 14/07/2010 20/07/2010 100720-24		Soil/Solid 15/07/2010 20/07/2010 100720-24		Soil/Solid 15/07/2010 20/07/2010 100720-24		Soil/Solid 15/07/2010 20/07/2010 100720-24		Soil/Solid 14/07/2010 20/07/2010 100720-24	
	of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Lab Sa	imple No.(s)	1843974	1843969		1844029		1844051		1843904		1843910	
Compo	onent ongener 118	LOD/Units	Method TM168	<3	<3	_	<3		<3		<3		<3	
	ŭ	, , ,		М		М		М		М		М		M
	ongener 81	<3 μg/kg	TM168	<3 M		М	<3	М	<3	м	<3	М	<3	М
PCB co	ongener 77	<3 µg/kg	TM168	<3 M	<3	М	<3	М	<3	м	<3	М	<3	М
PCB co	ongener 123	<3 µg/kg	TM168	<3 M	<3	М	<3	м	<3	М	<3	м	<3	М
PCB co	ongener 114	<3 μg/kg	TM168	<3 M	<3	м	<3	М	<3	М	<3	м	<3	М
PCB co	ongener 105	<3 µg/kg	TM168	<3 M	<3	м	<3	М	<3	М	<3	М	<3	М
PCB co	ongener 126	<3 µg/kg	TM168	<3 M	<3	M	<3	M	<3	M	<3	М	<3	M
PCB co	ongener 167	<3 μg/kg	TM168	<3	<3		<3		<3		<3		<3	
PCB co	ongener 156	<3 µg/kg	TM168	<3	<3	М	<3	M	<3	М	<3	М	<3	М
PCB co	ongener 157	<3 µg/kg	TM168	<3	<3	М	<3	M	<3	М	<3	М	<3	М
PCB co	ongener 169	<3 μg/kg	TM168		<3	М	<3	M	<3	М	<3	М	<3	М
	ongener 189	<3 μg/kg	TM168	M <3		М	<3	М	<3	М	<3	М	<3	М
	Total WHO 12		TM168	- M		М	<3	М	<3	М	<3	М	<3	М
		<3 µg/kg												
Arsenio		<0.6 mg/kg	TM181	3.38 M		М	13.9	М	20.2	М	30.9	М	5.27	М
Cadmi	um	<0.02 mg/kg	TM181	0.141 M	0.273	М	0.231	м	0.285	м	0.469	М	0.277	М
Chrom	ium	<0.9 mg/kg	TM181	4 M	17.3	м	13.2	М	18.4	М	25.5	м	11.8	М
Coppe	r	<1.4 mg/kg	TM181	3.16 M	12.1	М	8.61	М	11	М	18.2	М	10.3	М
Lead		<0.7 mg/kg	TM181	2.34	9.9		29.4		27.8		42.1		6.84	
Mercur	у	<0.14	TM181	<0.14	<0.14	М	<0.14	M	<0.14	М	<0.14	М	<0.14	M
Nickel		mg/kg <0.2 mg/kg	TM181	4.13	19.5	М	8.43	М	10.5	M	14.6	М	14.1	IV
Seleniı	ım	<1 mg/kg	TM181	M <1	<1	М	<1	М	<1	М	<1	М	<1	IV
Zinc		<1.9 mg/kg	TM181	# 13.1	43.5	#	63.9	#	80.7	#	107	#	35.9	#
				М		М		М		М		М		М
						+								
						+								
						\perp								
						_								
						T						T		
						+								

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

GRO BTEX MTBE GO	: (S)							
Results Legend		Sample Ref.	VC1	VC11	VC12	VC13	VC15	VC16
# ISO17025 accredited. aq Aqueous / settled sample. diss.fil: Dissolved / filtered sample. tot.unfilt * subcontracted test. ** % recovery of the surrogate standard to check the efficienc of the method. The results of the samples are not corrected for this recovery.	Da Da Da he Lab Sa	Depth (m) Sample Type ate Sampled ate Received SDG Ref ample No.(s)	3.10 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843974	2.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843969	4.30 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844029	3.80 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844051	2.60 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843904	3.40 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843910
Component GRO >C5-C12	LOD/Units <44 μg/kg	TM089	<44	<44	<44	154	<44	<88
Benzene	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<20
Ethylbenzene	<3 μg/kg	TM089	M	<3	M	M	<3	M
Toluene	<2 μg/kg	TM089	M <2	<2	M <2	M <2	M <2	M <4
m,p-Xylene	<6 μg/kg	TM089	M <6	M <6	M <6	M <6	M <6	M <12
o-Xylene	<3 μg/kg	TM089	M <3	M <3	M <3	<3	M <3	M <6
m,p,o-Xylene	<10 μg/kg	TM089	M <10	M <10		M <10		M <20
BTEX, Total	<10 μg/kg	TM089	M <10	M <10		M <10	M <10	M <20
Methyl tertiary butyl ether	<5 μg/kg	TM089	M <5	- M		M		<10 M
(MTBE)	15 pg/kg	TWOOS	#	#		#		#

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

Customer: University of Hull Attention: Ann Leighton FJ021830 P2334

						3011110 . 323			
Orga	notins on soils*								
	Results Legend	Customer	Sample Ref.	VC1	VC11	VC12	VC13	VC15	VC16
# M	ISO17025 accredited. mCERTS accredited.		_						
aq	Aqueous / settled sample.		Depth (m)		2.20	4.30	3.80	2.60	3.40
diss.filt	Dissolved / filtered sample.	S	ample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
tot.unfilt	Total / unfiltered sample.	Da	te Sampled	15/07/2010	14/07/2010	15/07/2010	15/07/2010	15/07/2010	14/07/2010
**	subcontracted test. % recovery of the surrogate	Da	te Received	20/07/2010	20/07/2010	20/07/2010	20/07/2010	20/07/2010	20/07/2010
	standard to check the efficiency		SDG Ref	100720-24	100720-24	100720-24	100720-24	100720-24	100720-24
	of the method. The results of the	I ah Sa	mple No.(s)	1843974	1843969	1844029	1844051	1843904	1843910
	individual compounds within the samples are not corrected	Lub ou	inpic ito.(o)	1043374	1043303	1044023	1044031	1043304	1043310
	for this recovery.								
Compo		LOD/Units	Method						
Tributy	l tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Í		mg/kg							
Tripher	nyl tin*	<0.05	SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
		mg/kg							
Dibutyl	tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		mg/kg							
Tetrabu	utyl tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		mg/kg							

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

PAH by GCMS								
Results Legend	Customer	Sample Ref.	VC1	VC11	VC12	VC13	VC15	VC16
# ISO17025 accredited. M mCERTS accredited. Aqueous / settled sample. diss.filt Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. ** % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery. Component	Da Da	Depth (m) Sample Type ate Sampled ate Received SDG Ref ample No.(s)	3.10 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843974	2.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843969	4.30 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844029	3.80 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844051	2.60 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843904	3.40 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843910
Naphthalene-d8 %	%	TM218	97.8	103	105	97.6	110	102
recovery** Acenaphthene-d10 %	%	TM218	95.4	98.5	102	95.7	107	98.4
recovery** Phenanthrene-d10 %	%	TM218	92.1	98.8	102	91.9	109	98.8
recovery**								
Chrysene-d12 % recovery**	%	TM218	86.6	84.2	88.5	86.4	97.7	84.7
Perylene-d12 % recovery**	%	TM218	87	88.2	95.8	86.8	107	90.1
Naphthalene	<9 µg/kg	TM218	<9 M	<9 M	22.3 M	<9 M	111 M	33.4
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	<12 M	<12 M	26.9 M	<12
Acenaphthene	<8 µg/kg	TM218	<8 M	<8 M	<8 M	<8 M	52.6 M	<8
Fluorene	<10 µg/kg	TM218	<10	<10	<10	<10	60	<10
Phenanthrene	<15 µg/kg	TM218	M <15	M 34.7	37.3	M <15	M 280	48.2
Anthracene	<16 µg/kg	TM218	M <16	M <16	22.6	M <16	M 107	<16
Fluoranthene	<17 μg/kg	TM218	M <17	M <17	69.6	M <17	M 410	<17
Pyrene	<15 μg/kg	TM218	M <15	M <15	66.7	M <15	M 375	<15
			М	М	М	М	M	
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14 M	37.3 M	<14 M	197 M	<14
Chrysene	<10 µg/kg	TM218	<10 M	<10 M	34.9 M	<10 M	162 M	<10
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15 M	45.2 M	<15 M	251 M	<15
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14 M	20.2 M	<14 M	99.4 M	<14
Benzo(a)pyrene	<15 µg/kg	TM218	<15	<15	39.8	<15	217	<15
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	M <18	M <18	28.4	M <18	M 122	<18
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	M <23	M <23	<23	<23	M 35.2	<23
Benzo(g,h,i)perylene	<24 μg/kg	TM218	M <24	M <24	M 37.5	M <24	M 169	<24
Polyaromatic hydrocarbons,		TM218	<118	<118	M 462	<118	M 2670	<118
Total USEPA 16	<118 µg/kg	TIVIZ 10	×110 M	×110 M	462 M		2670 M	×110

ALcontrol Laboratories Analytical Services

100720-24 SDG: Job:

H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

University of Hull Ann Leighton Customer: Attention: FJ021830 Order No.: 92334 Report No:

	Results Legend	Customer	Sample Ref.	VC17	VC18		VC19		VC2		VC20		VC22	
tot.unfilt * **	subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Da Da	Depth (m) sample Type ate Sampled te Received SDG Ref simple No.(s)	4.00 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843957	5.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843924		3.30 - 3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844015		6.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843983		3.38 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843933		3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843913	
	ongener 118	<3 μg/kg	TM168	<3	<3		<3		<3		<3		<3	
PCB co	ongener 81	<3 µg/kg	TM168	M	<3	М	<3	M	<3	М	<3	М	<3	М
PCB co	ongener 77	<3 μg/kg	TM168	M	<3	М	<3	М	<3	М	<3	М	<3	М
	ongener 123	<3 μg/kg	TM168	- M		М	<3	М		М	<3	М	<3	М
	ongener 114	<3 μg/kg	TM168	- M		М	<3	М		М	<3	М	<3	М
				М		м		М		М		М		М
	ongener 105	<3 μg/kg	TM168	<3 M		м	<3	М		М	<3	М	<3	М
	ongener 126	<3 μg/kg	TM168	<3 M		м	<3	М		М	<3	м	<3	М
	ongener 167	<3 µg/kg	TM168	<3 M		м	<3	М		М	<3	М	<3	М
PCB co	ongener 156	<3 µg/kg	TM168	<3 M		М	<3	М		М	<3	М	<3	M
PCB co	ongener 157	<3 µg/kg	TM168	<3 M	<3	м	<3	М	<3	М	<3	м	<3	М
PCB co	ongener 169	<3 µg/kg	TM168	<3 M	<3	м	<3	М	<3	М	<3	м	<3	М
PCB co	ongener 189	<3 µg/kg	TM168	<3 M	<3	M	<3	М	<3	м	<3	М	<3	М
PCBs,	Total WHO 12	<3 µg/kg	TM168	<3	<3		<3		<3		<3		<3	
Arsenio	3	<0.6 mg/kg	TM181	9.25	7.59		12.3		13.8		12.5		3.96	
Cadmi	um	<0.02	TM181	0.309	0.295	М	0.361	М	0.157	М	0.4	М	0.29	IV
Chrom	ium	mg/kg <0.9 mg/kg	TM181	18.5	20.7	М	20.7	М	10.3	М	29.5	М	12.3	M
Coppe	r	<1.4 mg/kg	TM181	23.3	13.5	М	15.4	М	4.61	М	19.4	М	10.5	М
Lead		<0.7 mg/kg	TM181	M 11.4	9.6	М	12.1	M	5.11	М	22	М	7.62	М
Mercur	ν	<0.14	TM181	M <0.14	<0.14	М	<0.14	М	<0.14	М	<0.14	М	<0.14	M
Nickel	,	mg/kg <0.2 mg/kg	TM181	M 20.6	22.4	М	22.5	М	8.35	М	28.4	М	15	N
Seleniu	ım	<1 mg/kg	TM181	M <1		М	<1	М		М	<1	М	<1	N
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			#		#		#		#		#		#
Zinc		<1.9 mg/kg	TM181	46 M	46.2	М	57.4	М	22.2	М	84.7	М	39.1	М
										1				
										1				
										\dashv				
										\dashv				
										\dashv				
										\dashv				
						_				+				

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

GRO BTEX MTBE GC	(S)							
Results Legend		Sample Ref.	VC17	VC18	VC19	VC2	VC20	VC22
# ISO17025 accredited. m mCERTS accredited. aq Aqueous / settled sample. diss.fit! Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. " srecovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected	Da Da	Depth (m) sample Type ate Sampled ite Received SDG Ref ample No.(s)	4.00 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843957	5.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843924	3.30 - 3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844015	6.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843983	3.38 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843933	3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843913
for this recovery. Component	LOD/Units	Method						
GRO >C5-C12	<44 µg/kg	TM089	81.7	<44	62	<44	130	<44
Benzene	<10 µg/kg	TM089	<10 M	<10	<10 M	<10 M	<10 M	<10 M
Ethylbenzene	<3 µg/kg	TM089	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
Toluene	<2 µg/kg	TM089	<2 M	<2 M	<2 M	<2 M	<2 M	<2 M
m,p-Xylene	<6 µg/kg	TM089	<6 M	<6 M	<6 M	<6 M	<6 M	<6 M
o-Xylene	<3 µg/kg	TM089	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
m,p,o-Xylene	<10 μg/kg	TM089	<10 M	<10 M	<10 M	<10 M	<10 M	<10 M
BTEX, Total	<10 µg/kg	TM089	<10 M	<10 M	<10 M	<10 M	<10 M	<10 M
Methyl tertiary butyl ether (MTBE)	<5 μg/kg	TM089	<5 #	<5 #	<5	<5 #	<5	<5 #
(MIBE)			#	#	#	#	#	#

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

Orga	notins on soils*								
	Results Legend ISO17025 accredited.	Customer	Sample Ref.	VC17	VC18	VC19	VC2	VC20	VC22
M aq diss.filt tot.unfilt *	mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. Ye recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within	Da Da	Depth (m) ample Type ate Sampled te Received SDG Ref ample No.(s)	4.00 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843957	5.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843924	3.30 - 3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844015	6.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843983	3.38 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843933	3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843913
	the samples are not corrected for this recovery.								
Compo	nent	LOD/Units	Method						
Tributy	tin*	<0.02 mg/kg	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Tripher	ıyl tin*	<0.05 mg/kg	SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibutyl	tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Tetrabi	ıtyl tin*	mg/kg <0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		mg/kg							

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

PAH	by GCMS								
#	Results Legend ISO17025 accredited.	Customer	Sample Ref.	VC17	VC18	VC19	VC2	VC20	VC22
M aq diss.filt tot.unfilt *	mCERTs accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Da Da Lab Sa	Depth (m) Sample Type ate Sampled te Received SDG Ref ample No.(s)	4.00 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843957	5.20 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843924	3.30 - 3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844015	6.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843983	3.38 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843933	3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1843913
Compo Naphth	nent nalene-d8 %	LOD/Units	Method TM218	93.5	102	92	88.6	105	103
recove		%	TM218	91.5	97.6	88.3	84.6	104	103
recove	ry**								
Phena recove	nthrene-d10 % ry**	%	TM218	89.8	97.9	84.9	79	102	104
Chryse	ene-d12 % recovery**	%	TM218	87.1	83.8	81.9	73.7	101	92.9
Peryle	ne-d12 % recovery**	%	TM218	82.1	87.6	77.2	76	97.3	105
Naphth	nalene	<9 µg/kg	TM218	11.4 M	<9 M	<9 M	<9 M	112 M	<9 M
Acena	ohthylene	<12 µg/kg	TM218	<12	<12	<12	<12	21.3	<12
Acena	ohthene	<8 µg/kg	TM218	M <8	<8	<8	M <8	28.3	<8
Fluore	ne	<10 µg/kg	TM218	M <10	M <10	M <10	M <10	M 45.1	<10 M
Phena	nthrene	<15 µg/kg	TM218	M 32.1	M <15	M 34.4	M <15	M 203	M <15
Anthra		<16 µg/kg	TM218	M <16	M <16	M <16	M <16	62.3	<16
Fluora			TM218	M <17	M <17	65.6	M <17	263	<17
		<17 µg/kg		М	М	M	M	М	М
Pyrene		<15 µg/kg	TM218	22.1 M	<15 M	61 M	<15 M	252 M	<15 M
Benz(a	ı)anthracene	<14 µg/kg	TM218	18.8 M	<14 M	46.1 M	<14 M	157 M	<14 M
Chryse	ene	<10 µg/kg	TM218	14.5 M	<10 M	35.6 M	<10 M	123 M	<10
Benzo	(b)fluoranthene	<15 µg/kg	TM218	20.5 M	<15 M	48.8 M	<15 M	232 M	<15
Benzo	(k)fluoranthene	<14 µg/kg	TM218	<14	<14	16.7	<14	80.6	<14
Benzo	(a)pyrene	<15 µg/kg	TM218	M <15	M <15	31.7	M <15	158	<15
Indend	(1,2,3-cd)pyrene	<18 µg/kg	TM218	M <18	M <18	M <18	M <18	97.9	<18
Dibenz	o(a,h)anthracene	<23 µg/kg	TM218	M <23	<23	M <23	M <23	M 33.1	<23
	(g,h,i)perylene	<24 µg/kg	TM218	M <24	M <24	M <24	M <24	M 163	<24
				М	М	М	M	М	M
	omatic hydrocarbons, JSEPA 16	<118 µg/kg	TM218	120 M	<118 M	340 M	<118 M	2030 M	<118 M

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

Customer: University of Hull Attention: Ann Leighton FJ021830 P2334

	Results Legend	Customer	Sample Ref.	VC24	VC27		VC28		VC29		VC3		VC30	
# M aq diss.filt tot.unfilt * **	ISO17025 accredited. mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Da Da Lab Sa	Depth (m) cample Type ate Sampled te Received SDG Ref ample No.(s)	3.60 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844091	4.90 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843989		4.30 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844088		2.90 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844129		Soil/Solid 15/07/2010 20/07/2010 100720-24 1844044		3.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844121	
Compo		LOD/Units	Method		10									
PCB c	ongener 118	<3 µg/kg	TM168	<3 M	<3	М	<3	М	<3	м	<3	м	<3	М
PCB c	ongener 81	<3 µg/kg	TM168	<3 M	<3	м	<3	М	<3	М	<3	м	<3	М
PCB o	ongener 77	<3 µg/kg	TM168	<3	<3		<3		<3		<3		<3	
PCB c	ongener 123	<3 µg/kg	TM168	<3	<3	M	<3	M	<3	M	<3	М	<3	M
PCB o	ongener 114	<3 μg/kg	TM168	<3	<3	M	<3	M	<3	M	<3	М	<3	M
PCB c	ongener 105	<3 μg/kg	TM168	<3	<3	М	<3	М	<3	М	<3	М	<3	М
PCB c	ongener 126	<3 μg/kg	TM168	<3	<3	М	<3	M	<3	М	<3	М	<3	M
PCB c	ongener 167	<3 µg/kg	TM168	<3	<3	М	<3	M	<3	М	<3	М	<3	M
PCB c	ongener 156	<3 µg/kg	TM168	<3	<3	М	<3	M	<3	М	<3	М	<3	М
PCB c	ongener 157	<3 μg/kg	TM168	M	<3	М	<3	M	<3	M	<3	М	<3	М
PCB c	ongener 169	<3 µg/kg	TM168	M	<3	М	<3	M	<3	M	<3	М	<3	M
PCB c	ongener 189	<3 μg/kg	TM168		<3	М	<3	M	<3	M	<3	М	<3	M
PCBs,	Total WHO 12	<3 μg/kg	TM168		<3	М	<3	M	<3	M	<3	М	<3	М
Arseni	.	<0.6 mg/kg	TM181	18.4	6.43		6		8.99		6.65		7.42	
Cadmi		<0.02	TM181	M 0.441		М	0.25	M		М	0.296	М	0.266	М
Chrom	ium	mg/kg <0.9 mg/kg	TM181	M 34.7	16.2	М	16.4	M	19.6	M	20.6	М	21.7	М
Coppe		<1.4 mg/kg	TM181	24.2		М	11.3	M		M	13.2	М	13.8	М
	'	<0.7 mg/kg	TM181	33.2 M		М	8.23	M		М	11.2	М	13.6	М
Lead				М		М		М		М		м		М
Mercui	у	<0.14 mg/kg	TM181	<0.14 M		м	<0.14	M		М	<0.14	М	<0.14	М
Nickel		<0.2 mg/kg	TM181	25.5 M		м	17.7	М		М	20.8	м	20.8	М
Selenii	m	<1 mg/kg	TM181	1.04 #	<1	#	<1	#	<1	#	<1	#	<1	#
Zinc		<1.9 mg/kg	TM181	106 M	39.5	М	42.7	М	51.3	м	48.5	М	51.1	М
						+								

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

Customer: University of Hull Attention: Ann Leighton FJ021830 P2334

GPO	BTEX MTBE GC	(8)							
	Results Legend		Sample Ref.	VC24	VC27	VC28	VC29	VC3	VC30
tot.unfilt * **	ISO17025 accredited. MCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Da Da	Depth (m) sample Type ate Sampled te Received SDG Ref ample No.(s)	3.60 Soii/Solid 14/07/2010 20/07/2010 100720-24 1844091	4.90 Soil/Solid 15/07/2010 20/07/2010 100720-24 1843989	4.30 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844088	2.90 Soil/Solid 14/07/2010 20/07/2010 100720-24 1844129	Soil/Solid 15/07/2010 20/07/2010 100720-24 1844044	3.00 Soil/Solid 15/07/2010 20/07/2010 100720-24 1844121
GRO >	C5-C12	<44 µg/kg	TM089	162	108	128	848	<44	92.8
Benze	ne	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Ethylbe	enzene	<3 µg/kg	TM089	M <3	M <3	<3	35.7	M <3	<3 M
Toluen	e	<2 µg/kg	TM089	M <2	M <2	M <2	13.8	M <2	M
m,p-Xy	lene	<6 µg/kg	TM089	M <6	M <6	<6	33.4	M <6	M
o-Xyle	ne	<3 µg/kg	TM089	M <3	M <3	<3	20.7	M <3	M
m,p,o-	Kylene	<10 µg/kg	TM089	M <10	M <10	<10	M 54.1	<10	M <10
BTEX,	Total	<10 µg/kg	TM089	M <10	M <10	M <10	M 104	M <10	M <10
Methyl	tertiary butyl ether	<5 μg/kg	TM089	M <5	M <5	M <5	M <5	M <5	M <5
(MTBE)			#	#	#	#	#	#

ALcontrol Laboratories Analytical Services

100720-24 SDG: Job:

H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

University of Hull Ann Leighton FJ021830 Customer: Attention: Order No.: 92334 Report No:

Organotins on soils*								
Organotins on soils*	Customer	Sample Ref.	VC24	VC27	VC28	VC29	VC3	VC30
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)		4.90	4.30	2.90		3.00
tot.unfilt Total / unfiltered sample.	D:	ample Type ate Sampled		Soil/Solid	Soil/Solid 14/07/2010	Soil/Solid	Soil/Solid	Soil/Solid
* subcontracted test. ** % recovery of the surrogate		te Received	14/07/2010 20/07/2010	15/07/2010 20/07/2010	20/07/2010	14/07/2010 20/07/2010	15/07/2010 20/07/2010	15/07/2010 20/07/2010
standard to check the efficiency		SDG Ref		100720-24	100720-24	100720-24	100720-24	100720-24
of the method. The results of the individual compounds within	Lab Sa	mple No.(s)	1844091	1843989	1844088	1844129	1844044	1844121
the samples are not corrected								
for this recovery. Component	LOD/Units	Method						
Tributyl tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	mg/kg							
Triphenyl tin*	<0.05	SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibutyl tin*	mg/kg <0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibutyi tiri	mg/kg	306	\0.02	\0.02	\0.02	~0.02	\0.02	<0.02
Tetrabutyl tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	mg/kg							
							-	

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

PAH by GCMS								
Results Legend	Customer	Sample Ref.	VC24	VC27	VC28	VC29	VC3	VC30
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.	5	Depth (m) Sample Type	3.60 Soil/Solid	4.90 Soil/Solid	4.30 Soil/Solid	2.90 Soil/Solid	Soil/Solid	3.00 Soil/Solid
tot.unfilt Total / unfiltered sample. * subcontracted test. * recovery of the surrogate standard to check the efficiency	Da	ate Sampled ate Received SDG Ref	14/07/2010 20/07/2010 100720-24	15/07/2010 20/07/2010 100720-24	14/07/2010 20/07/2010 100720-24	14/07/2010 20/07/2010 100720-24	15/07/2010 20/07/2010 100720-24	15/07/2010 20/07/2010 100720-24
of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Lab Sa	ample No.(s)	1844091	1843989	1844088	1844129	1844044	1844121
Component	LOD/Units	Method						
Naphthalene-d8 % recovery**	%	TM218	105	100	94.3	94.3	101	98.7
Acenaphthene-d10 %	%	TM218	104	98.9	91.5	90.5	97.3	96.6
ecovery** Phenanthrene-d10 %	%	TM218	103	102	88.2	86.7	97.9	92.8
ecovery** Chrysene-d12 % recovery**	%	TM218	103	86.1	82.6	81.3	84.8	89.4
Perylene-d12 % recovery**	%	TM218	101	94.4	83.1	82	92.6	93.5
Naphthalene	<9 µg/kg	TM218	156 M	41.8 M	16.7	12.8 M	24.9 M	162
Acenaphthylene	<12 µg/kg	TM218	43.6 M	<12 M	<12 M	<12 M	<12 M	26.5
Acenaphthene	<8 µg/kg	TM218	42 M	<8 M	<8 M	<8 M	<8 M	35.9
Fluorene	<10 µg/kg	TM218	61.3 M	<10 M	<10 M	<10 M	<10 M	62.3
Phenanthrene	<15 µg/kg	TM218	256 M	68.8 M	27.1 M	22.9 M	52.9 M	279
Anthracene	<16 µg/kg	TM218	106 M	<16 M	<16 M	<16 M	<16 M	86.9
Fluoranthene	<17 μg/kg	TM218	396 M	21.8 M	<17	<17 M	36.4 M	383
Pyrene	<15 µg/kg	TM218	359 M	26.8 M	<15	<15 M	40.8 M	337
Benz(a)anthracene	<14 µg/kg	TM218	237 M	<14 M	<14	<14	<14 M	224
Chrysene	<10 µg/kg	TM218	170 M	<10 M	<10 M	<10 M	20.5 M	180
Benzo(b)fluoranthene	<15 µg/kg	TM218	353 M	18 M	<15 M	<15 M	33.8 M	345
Benzo(k)fluoranthene	<14 µg/kg	TM218	108 M	<14 M	<14	<14	<14	113
Benzo(a)pyrene	<15 µg/kg	TM218	249 M	<15 M	<15 M	<15 M	21.9 M	248
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	142 M	<18 M	<18 M	<18 M	<18 M	143
Dibenzo(a,h)anthracene	<23 μg/kg	TM218	43.1 M	<23 M	<23 M	<23 M	<23 M	45.7
Benzo(g,h,i)perylene	<24 µg/kg	TM218	210 M	29.2 M	<24	<24	35.5 M	213
Polyaromatic hydrocarbons, Total USEPA 16	<118 µg/kg	TM218	2930 M	206 M	<118	<118 M	267	2880

ALcontrol Laboratories Analytical Services

SDG: 100720-24 **Job**: H UNIHUL

H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

	Results Legend	Customer	Sample Ref.	VC6	VC7	VC8		
	ISO17025 accredited. mCERTS accredited.	_						
	Aqueous / settled sample. Dissolved / filtered sample.	s	Depth (m) ample Type	5.30 Soil/Solid	Soil/Solid	4.70 Soil/Solid		
tot.unfilt	Total / unfiltered sample. subcontracted test.		te Sampled	15/07/2010	14/07/2010	15/07/2010		
**	% recovery of the surrogate	Da	te Received	20/07/2010	20/07/2010	20/07/2010		
	standard to check the efficiency of the method. The results of the	Lab Sa	SDG Ref imple No.(s)	100720-24 1844061	100720-24 1843995	100720-24 1843971		
	individual compounds within the samples are not corrected		1 (.,	1011001	101000	1010011		
Compo	for this recovery.	LOD/Units	Method					
	ngener 118	<3 µg/kg	TM168	<3	<3	<3		
PCB co	ngener 81	<3 µg/kg	TM168	M <3	M <3	<3	M	
				M	М		м	
PCB co	ngener 77	<3 µg/kg	TM168	<3 M	<3 M	<3	м	
PCB co	ngener 123	<3 μg/kg	TM168	<3	<3	<3		
PCB co	ngener 114	<3 μg/kg	TM168	M <3	M	<3	M	
		-о ружу		M	М		м	
PCB co	ngener 105	<3 µg/kg	TM168	<3 M	<3 M	<3	м	
PCB cc	ngener 126	<3 µg/kg	TM168	<3	<3	<3		
PCP co	ngener 167	<3 μg/kg	TM168	M <3	M <3	<3	М	
	· ·			M	М		м	
PCB co	ngener 156	<3 µg/kg	TM168	<3 M	<3 M	<3	м	
PCB cc	ngener 157	<3 µg/kg	TM168	<3	<3	<3		
DOD an	ngener 169	<2 ua/lea	TM168	M <3	M <3	<3	М	
PCB CC	rigerier 169	<3 µg/kg	TIVITOO	<-> M	M		м	
PCB co	ngener 189	<3 µg/kg	TM168	<3 M	<3 M	<3	м	
PCBs,	Total WHO 12	<3 µg/kg	TM168	<3	<3	<3	IVI	
			TM404	24.0	40.0	40.0		
Arsenic		<0.6 mg/kg	TM181	24.9 M	18.9 M	13.6	м	
Cadmiu	im	<0.02	TM181	0.453	0.469	0.27		
Chromi	um	mg/kg <0.9 mg/kg	TM181	M 31.6	M 42.5	16.8	М	
				M	M		М	
Copper		<1.4 mg/kg	TM181	24.2 M	26.6 M	13.9	м	
Lead		<0.7 mg/kg	TM181	44.7	48.8	35.2		
Mercun	/	<0.14	TM181	M <0.14	M <0.14	<0.14	М	
		mg/kg		М	М		M	
Nickel		<0.2 mg/kg	TM181	17.4 M	24.8 M	11	м	
Seleniu	m	<1 mg/kg	TM181	<1	1.1	<1		
Zinc		<1.9 mg/kg	TM181	# 121	131	77.5	#	
				M	M		м	
	\exists							

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

		<i>,</i> _,							
GRO	BTEX MTBE GC							I	
	Results Legend ISO17025 accredited. mCERTS accredited. Aqueous / settled sample.	Customer	Sample Ref. Depth (m)	VC6 5.30	VC7	VC8 4.70			
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency	Da Da	ample Type ate Sampled te Received SDG Ref	Soil/Solid 15/07/2010 20/07/2010 100720-24	Soil/Solid 14/07/2010 20/07/2010 100720-24	Soil/Solid 15/07/2010 20/07/2010 100720-24			
	of the method. The results of the individual compounds within the samples are not corrected for this recovery.	Lab Sa	imple No.(s)	1844061	1843995	1843971			
Compo		LOD/Units <44 µg/kg	Method TM089	291	<44	97.5			
Benzei	ne	<10 µg/kg	TM089	<10	<10	<10			
Ethylbe	enzene	<3 µg/kg	TM089	<3 M	<3 M	<3			
Toluen	е	<2 µg/kg	TM089	<2 M	<2 M	<2			
m,p-Xy		<6 µg/kg	TM089	<6 M	<6 M				
o-Xylei		<3 μg/kg	TM089	<3 M	<3 M				
m,p,o-Z		<10 μg/kg <10 μg/kg	TM089 TM089	<10 M <10	<10 M <10	<10 M	1		
	tertiary butyl ether	<5 μg/kg	TM089	- M <5	- M <5				
(MTBE				#	#	#	!		

ALcontrol Laboratories Analytical Services

SDG: 100720-24

Job: H_UNIHULL_HUL-4
Client Reference:

Location: YF HUMBER

	Reported Cool							
Orga	notins on soils*							
- 5*	notins on soils*	Customer	Sample Ref.	VC6	VC7	VC8		
#	ISO17025 accredited.			V00	VO1	V 00		
M	mCERTS accredited. Aqueous / settled sample.		Depth (m)	5.30		4.70		
aq diss.filt	Dissolved / filtered sample.	s	ample Type	Soil/Solid	Soil/Solid	Soil/Solid		
tot.unfilt	Total / unfiltered sample.	Da	te Sampled	15/07/2010	14/07/2010	15/07/2010		
*	subcontracted test. % recovery of the surrogate	Da	te Received	20/07/2010	20/07/2010	20/07/2010		
	standard to check the efficiency	54	SDG Ref	100720-24	100720-24	100720-24		
	of the method. The results of the	Lob Co		100720-24	100720-24	100720-24		
	individual compounds within	Lab Sa	mple No.(s)	1844061	1843995	1843971		
	the samples are not corrected for this recovery.							
Compo		LOD/Units	Method					
Tributy	l tin*	<0.02	SUB	<0.02	<0.02	<0.02		
,		mg/kg						
Tripher	nyl tin*	<0.05	SUB	<0.05	<0.05	<0.05		
		mg/kg						
Dibutyl	tin*	< 0.02	SUB	<0.02	<0.02	<0.02		
		mg/kg <0.02						
Tetrab	utyl tin*	<0.02	SUB	<0.02	<0.02	<0.02		
		mg/kg						
								!

ALcontrol Laboratories Analytical Services

100720-24 SDG: Job:

H_UNIHULL_HUL-4

Client Reference:

Location: YF HUMBER

University of Hull Ann Leighton Customer: Attention: FJ021830 Order No.: 92334 Report No:

						5011110 1 526		
PAH	by GCMS							
	Results Legend	Customer	Sample Ref.	VC6	VC7	VC8		
# M	ISO17025 accredited. mCERTS accredited.							
aq	Aqueous / settled sample.		Depth (m)			4.70		
	Dissolved / filtered sample. Total / unfiltered sample.		ample Type	Soil/Solid	Soil/Solid	Soil/Solid		
*	subcontracted test.		ate Sampled	15/07/2010	14/07/2010	15/07/2010		
**	% recovery of the surrogate	Da	te Received	20/07/2010	20/07/2010	20/07/2010		
	standard to check the efficiency of the method. The results of the		SDG Ref	100720-24	100720-24	100720-24		
	individual compounds within	Lab Sa	imple No.(s)	1844061	1843995	1843971		
	the samples are not corrected for this recovery.							
Compo		LOD/Units	Method					
	nalene-d8 %	%	TM218	101	107	103		
recove					-			
Acena	phthene-d10 %	%	TM218	99.1	105	102		
recove	ry**							
Phena	nthrene-d10 %	%	TM218	96.5	106	101		
recove								
Chryse	ene-d12 % recovery**	%	TM218	93.6	93.8	100		
D		0/	T14040		400	00.4		
Perylei	ne-d12 % recovery**	%	TM218	96	103	96.1		
Naphth	nalana	<0.ua/ka	TM218	133	162	62.6		
ιναμπι	ialette	<9 µg/kg	TIVIZIO	133 M	102 M	02.0 M		
Acena	phthylene	<12 µg/kg	TM218	32.9	33.6	23.9		
55114				M	00.0 M	Z5.5		
Acena	phthene	<8 µg/kg	TM218	54.8	42.6	36.9		
		, , , ,		М	M	М	 	
Fluore	ne	<10 µg/kg	TM218	75	66.9	41.9		
				М	М	М		
Phena	nthrene	<15 µg/kg	TM218	270	287	202		
		.40 "	T1 10	M	M	M		
Anthra	cene	<16 µg/kg	TM218	127	94.6	82.3		
Elucro	nthene	<17 ua/lea	TM218	433	M 340	334		
Fluora	ntnene	<17 µg/kg	1101218	433 M	340 M	334 M		
Pyrene	`	<15 µg/kg	TM218	372	302	363		
i yrene		<15 μg/kg	TIVIZIO	M	M	303 M		
Benz(a	a)anthracene	<14 µg/kg	TM218	215	195	164		
	.,				М	M		
Chryse	ene	<10 µg/kg	TM218	186	169	117		
				М	М	М		
Benzo	(b)fluoranthene	<15 µg/kg	TM218	341	283	247		
				M	M	M		
Benzo	(k)fluoranthene	<14 µg/kg	TM218	104	104	98.5		
_	· >			M	M	M		
Benzo	(a)pyrene	<15 µg/kg	TM218	250	218	190		
Indono	(1,2,3-cd)pyrene	<10 ua/ka	TM218	M 142	131	102		
maeno	(1,2,3-cu)pyrene	<18 µg/kg	1101210	142 M	131 M	102 M		
Dibenz	co(a,h)anthracene	<23 µg/kg	TM218	44.1	40.2	<23		
DIDCHE	.0(4,11)411411400110	-20 pg/kg	1111210	м.	M	-20 M		
Benzo	(g,h,i)perylene	<24 µg/kg	TM218	204	191	145		
	(3, ,) -)			М	М	М		
Polyard	omatic hydrocarbons,	<118 µg/kg	TM218	2980	2660	2210		
Total L	JSEPA 16			M	М	М		
-	_							

ALcontrol Laboratories Analytical Services

Table of Results - Appendix

Client: University of Hull 100720-24 Client Ref: SDG Number: **REPORT KEY** Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 No Determination Possible NDP ISO 17025 Accredited MCERTS Accredited М Result previously reported (Incremental reports only) Possible Fibres Detected Equivalent Carbon No Fibres Detected PFD (Aromatics C8-C35) Note: Method detection limits are not always achievable due to various circumstances beyond our control

Method No	Reference	Description	Wet/Dry Sample ¹
PM001		Preparation of Samples for Metals Analysis	Dry
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material	Wet
SUB		Subcontracted Test	Wet
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)	
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils	Dry
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES	Dry
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546	Wet

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

Report No:

By email

Date Received:

ALcontrol Hawarden Unit7-8, Hawarden Business Park Manor Road (off Manor Lane) Hawarden, Deeside Flintshire, CH5 3US

Date Tested: 29/07/2010 to 02/08/2010

10-18705/1

23/07/2010

Date Issued: 02/08/2010

Page: 1 of 7

For the attention of: Scott Idiens

21 soil samples received from ALcontrol Hawarden (O/N: 149859; Project: 100720-24) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory re	Laboratory reference			173121 1855244
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 2 of 7

Laboratory r	173122 1855246	173123 1855247	173124 1855250	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 3 of 7

Laboratory r	173125 1855258	173126 1855259	173127 1855260	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 4 of 7

Laboratory r	173128 1855268	173129 1855273	173130 1855276	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 5 of 7

Laboratory re	173131 1855279	173132 1855283	173133 1855287	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 6 of 7

Laboratory r	173134 1855294	173135 1855302	173136 1855323	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 10-18705/1

Date Received: 23/07/2010

Date Tested: 29/07/2010 to 02/08/2010

Date Issued: 02/08/2010

Page: 7 of 7

Laboratory re	Laboratory reference			173139 1855376
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Robin T R Macdonald

Operational Director

APPENDIX

APPENDIX

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following:
 NRA Leach tests, flash point, ammonium as NH₄ by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and
 TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- 13. **Surrogate recoveries** Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAH MS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
EPH	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC FID
PCB 7 CONGENERS	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GC MS
PCB TOTAL	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GS MS
SVOC	DCM	LIQUID/LIQUID SHAKE	GC MS
FREE SULPHUR	DCM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DCM	LIQUID/LIQUID SHAKE	GC MS
TRIAZINE HERBS	DCM	LIQUID/LIQUID SHAKE	GC MS
PHENOLS MS	DCM	SOLID PHASE EXTRACTION	GC MS
TPH by INFRA RED (IR)	TCE	LIQUID/LIQUID EXTRACTION HPLC	
MINERAL OIL by IR	TCE	LIQUID/LIQUID EXTRACTION HPLC	
GLYCOLS	NONE	DIRECT INJECTION	GC FID

SOLID MATRICES EXTRACTION SUMMARY

SOLID MATRICES EXTRACTION SUMMARY						
ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS		
Solvent Extractable Matter	D&C	DCM	SOXTHERM	GRAVIMETRIC		
Cyclohexane Ext. Matter	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC		
Thin Layer Chromatography	D&C	DCM	SOXTHERM	IATROSCAN		
Elemental Sulphur	D&C	DCM	SOXTHERM	HPLC		
Phenols by GCMS	WET	DCM	SOXTHERM	GC-MS		
Herbicides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS		
Pesticides	D&C	HEXANE:ACETONE	SOXTHERM	GC-MS		
EPH (DRO)	D&C	HEXANE:ACETONE	END OVER END	GC-FID		
EPH (Min oil)	D&C	HEXANE:ACETONE	END OVER END	GC-FID		
EPH (Cleaned up)	D&C	HEXANE:ACETONE	END OVER END	GC-FID		
EPH CWG by GC	D&C	HEXANE:ACETONE	END OVER END	GC-FID		
PCB tot / PCB con	D&C	HEXANE:ACETONE	END OVER END	GC-MS		
Polyaromatic Hydrocarbons (MS)	WET	HEXANE:ACETONE	Microwave TM218.	GC-MS		
C8-C40 (C6-C40)EZ Flash	WET	HEXANE:ACETONE	SHAKER	GC-EZ		
Polyaromatic Hydrocarbons Rapid GC	WET	HEXANE:ACETONE	SHAKER	GC-EZ		
Semi Volatile Organic Compounds	WET	DCM:ACETONE	SONICATE	GC-MS		

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

####